Photoemissive Cathodes: I. Photoemissive Surfaces in Imaging Devices

  • Martin Rome
Part of the Optical Physics and Engineering book series (OPEG, volume 1)


Except for tubes of the vidicon type, all photoelectronic imaging tubes in current use employ as their light-to-electron conversion medium a photo-emissive layer. The surface largely determines the range of spectral sensitivity and maximum detective performance of the device. Some of the early camera tubes (the single-sided target iconoscope and one type of image dissector) used opaque photosurfaces; however, all modern camera tubes and essentially all image intensifiers and image converters use semitransparent photosurfaces.* The characteristics then of photosurfaces in photo-electronic imaging tubes are those of semitransparent surfaces in combination with the supporting window material.


Spectral Response Thermionic Emission Dark Current Radiant Sensitivity Electron Volt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. H. M. Deltrap and A. H. Hanna, in Fourth Symposium on Photoelectric Image Devices, Imperial College, London, September 1968.Google Scholar
  2. 2.
    D. A. Patterson and W. H. Vaughan, J. Opt. Soc. Am. 53, 851 (1963).CrossRefGoogle Scholar
  3. 3.
    D. F. Heath and P. A. Sacher, App!. Opt. 5, 937 (1966).CrossRefGoogle Scholar
  4. 4.
    A. S. Green, The Middle Ultraviolet: Its Science and Technology, John Wiley and Sons, New York (1966), pp. 332–345.Google Scholar
  5. 5.
    M. Rome, App!. Opt. 5, 855 (1966).CrossRefGoogle Scholar
  6. 6.
    E. A. Taft and H. R. Philipp,J. Phys. Chem. Solids 3, 1 (1957).CrossRefGoogle Scholar
  7. 7.
    H. R. Phillip and E. A. Taft, J. Phys. Chem. Solids 1, 159 (1956).CrossRefGoogle Scholar
  8. 8.
    A. M. Tyutikov and Y. A. Shuba, Opt. Spectr. 9, 332 (1955).Google Scholar
  9. 9.
    R. H. Goehner, Conference on Photoelectric and Secondary Electron Emission, Univ. of Minnesota, Minneapolis, August 1969.Google Scholar
  10. 10.
    E. A. Taft and L. Apker, J. Opt. Soc. Am. 43, 81 (1953).CrossRefGoogle Scholar
  11. 11.
    L. Dunkelman, W. B. Fowler, and J. P. Hennes, Appl. Opt. 1, 695 (1962).CrossRefGoogle Scholar
  12. 12.
    A. H. Sommer, Photoemissive Materials, Preparation, Properties, and Uses, John Wiley and Sons, New York (1968).Google Scholar
  13. 13.
    A. H. Sommer, Rev. Sci. Instr. 26, 725 (1955).CrossRefGoogle Scholar
  14. 14.
    J. J. Scheer and J. van Laar, Solid State Commun. 3, 189 (1965).CrossRefGoogle Scholar
  15. 15.
    C. H. A. Syms, this volume, Chapter 8.Google Scholar
  16. 16.
    M. Rome, Proc. Workshop on Optical Telescope Technology, Huntsville, Ala., April 29 (1969).Google Scholar
  17. 17.
    M. Rome, IEEE Trans. Nucl. Sci. 11 (3), 93 (1964).CrossRefGoogle Scholar
  18. 18.
    M. Rome, in Radioisotopes for Aerospace, J. C. Dempsey and P. Polishuk, eds., Plenum Press, New York (1966), p. 70.Google Scholar
  19. 19.
    R. P. Randall, Fourth Symposium on Photoelectronic Image Devices, Imperial College, London, September 1968.Google Scholar
  20. 20.
    M. Rome, S.P.I.E., San Francisco, August 11 (1969).Google Scholar
  21. 21.
    W. Heimann, Phys. Stat. So!. 6, 713 (1964).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Martin Rome
    • 1
  1. 1.E.M.R—Photoelectric, Inc.PrincetonUSA

Personalised recommendations