Soft X-ray Lasers Via Electron-Collisional Pumping

  • R. A. Andrews
Part of the Studies in the Natural Sciences book series (SNS, volume 8)


One possible technique for obtaining gain in the soft x-ray region of the spectrum is to use electron-collisional pumping of an appropriate ion species. This can be done in a manner analogous to known ion lasers which operate in the visible portion of the spectrum. The differences being: 1) more highly ionized ions are used to obtain shorter wavelength transitions, 2) the pumping electrons are at a higher temperature to populate the more energetic transitions, and 3) the lifetimes are shorter which implies higher pump intensity per unit area (P/a ∝ ν4). In the case of shorter wavelength transitions one can project known laser transitions isoelectronically to higher Z ions and hence shorter wavelengths or investigate unique ionic electron configurations that are not observed in neutral or weakly ionized species. This technique works well for electronic configurations with relatively few electrons. With many-electron systems, level crossings and other anomalous effects with increasing Z limit the range over which a group of levels which are a viable laser scheme can be isoelectronically projected to higher Z.


Laser Transition Lower Laser Level Laser Level Picosecond Laser Picosecond Laser Pulse 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. N. Knyazev and V. S. Letokhov, Optics Comm. 3, 332 (1971).ADSCrossRefGoogle Scholar
  2. 2.
    T. P. Donaldson, R. J. Hutcheon, M. H. Key, and C. Lewis, VII Intn’l Quantum Electronics Conf. Montreal, paper G. 9, (1972).Google Scholar
  3. 3.
    P. I. Peyraud, J. de Phys. 29, 88 (1968).CrossRefGoogle Scholar
  4. 4.
    P. I. Peyraud, J. de Phys. 29, 306 (1968).CrossRefGoogle Scholar
  5. 5.
    P. I. Peyraud, J. de Phys. 29, 872 (1968).CrossRefGoogle Scholar
  6. 6.
    J. B. Hasted, “Physics of Atomic Collisions” ( American Elsevier, New York, 1972 ).Google Scholar
  7. 7.
    R. C. Elton, NRL Memo Report No. 2799, (1974); Appl. Optics 14, 97 (1975).Google Scholar
  8. 8.
    W. T. Walter, N. Solimene, M. Piltch, and G. Gould, IEEE J. Quantum Electronics QE-2, 474 (1966).ADSCrossRefGoogle Scholar
  9. 9.
    R. L. Kelly and L. J. Palumbo, NRL Report No. 7599 (1973).Google Scholar
  10. 10.
    R. C. Elton, in “Methods of Experimental Physics - Plasma Physics”, Ch 4, Vol 9A, eds. H. R. Griem and R. H. Lovberg, ( Academic Press, New York, 1970 ).Google Scholar
  11. 11.
    W. L. Wiese, M. W. Smith, and B. M. Miles, Nat. Bur. Stand. Report NSRDS-NBS 22 (1969).Google Scholar
  12. 12.
    K. G. Whitney, J. Davis, J. Appl. Phys., 45, 5294 (1974).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • R. A. Andrews
    • 1
  1. 1.Naval Research LaboratoryUSA

Personalised recommendations