Theoretical Interpretations of Enhanced Laser Light Absorption

  • W. L. Kruer
Part of the Studies in the Natural Sciences book series (SNS, volume 8)


The absorption of intense laser light is obviously one of the very important questions for laser fusion applications. In experiments this absorption has been observed to be substantially more efficient than expected on the basis of classical inverse Bremsstrahlung. An absorption efficiency of ~ 70% has been typically observed in experiments with slab targetsl–4 --even using laser light intensities exceeding 1016 W/cm2 (Nd). It should be noted that a number of experiments with curved targets such as spheres or cylinders have shown a somewhat lower absorption efficiency of ~ 30%, with about half the energy lost to refraction around the target. But even in these experiments the absorption is usually found to be greater than expected classically at high intensities.


Laser Light Plasma Wave Critical Density Resonant Absorption Plasma Slab 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Yamanaka, T. Yamanaka, T. Saski, J. Mizue and U. B. Kang, Phys. Rev. Letters 32, 1038 (1974).ADSCrossRefGoogle Scholar
  2. 2.
    B. Ripin, J. McMahon, E. McLean, W. Manheimer and J. Stamper, Phys. Rev. Letters 33, (1974).Google Scholar
  3. 3.
    J. F. Kephart, R. P. Godwin and G. H. McCall, Applied Physics Letters 22, 108 (1977).Google Scholar
  4. 4.
    K. Eidmann, C. van Kessel, M. H. Key, P. Mulser and R. Sigel, Proceedings of the 5th Conference on Plasma Physics and Controlled Nuclear Research (Tokyo, 1974), paper F3–1.Google Scholar
  5. 5.
    M. Lubin, E. Goldman, J. Soures, L. Goldman, W. Friedman, S. Letzring, J. Albritton, P. Koch and B. Yaakobi, ibid, paper F4–2.Google Scholar
  6. 6.
    G. Charatis, J. Downward, R. Goford, T. Henderson, J. Hildum, R. Johnson, T. Leonard, F. Mayer, S. Segall, D. Slolmon, ibid, paper F1.Google Scholar
  7. 7.
    J. Dawson and C. Oberman, Phys. Fluids 6, 394 (1963).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    W. L. Kruer and J. M. Dawson, Phys. Fluids 12, 446 (1972);ADSCrossRefGoogle Scholar
  9. W. L. Kruer and J. M. Dawson, J. De Groot and J. Katz, Phys. Fluids 16, 401 (1973).ADSCrossRefGoogle Scholar
  10. 9.
    V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas, ( Pergamon Press, New York, 1964 ), p. 260.Google Scholar
  11. 10.
    J. Freidberg, R. Mitchell, R. Morse and L. Rudsinski, Phys. Rev. Letters 28, 795 (1972);ADSCrossRefGoogle Scholar
  12. P. Koch and J. Albritton, Phys. Rev. Letters 32, 1420 (1974).ADSCrossRefGoogle Scholar
  13. 11.
    A. Ehler, D. Giovanielli, R. Godwin, G. McCall, R. Morse and S. Rockwood, Los Alamos Scientific Laboratory preprint LA-5611 (1974).Google Scholar
  14. 12.
    W. L. Kruer, Phys. Fluids 12, 2423 (1972).ADSCrossRefGoogle Scholar
  15. 13.
    E. Valeo, C. Oberman and F. Perkins, Phys. Rev. Letters 28, 340 (1972);ADSCrossRefGoogle Scholar
  16. D. Dubois and M. Goldman, ibid 28, 218 (1972).ADSCrossRefGoogle Scholar
  17. 14.
    H. Dreicer, R. Ellis and J. Ingraham, Phys. Rev. Letters 26, 1616 (1971);ADSCrossRefGoogle Scholar
  18. T. K. Chu and H. Hendel, Phys. Rev. Letters 29, 634 (1972).ADSCrossRefGoogle Scholar
  19. 15.
    E. J. Valeo and W. L. Kruer, Phys. Rev. Letters 33, 750 (1974);ADSCrossRefGoogle Scholar
  20. K. G. Estabrook. E. Valeo and W. Kruer, Phys. Letters 49A, 109 (1974); D. Forslund (this meeting).Google Scholar
  21. 16.
    A. B. Langdon and B. F. Lasinski, Lawrence Livermore Laboratory preprint UCRL-75029 (1973).Google Scholar
  22. 17.
    R. E. Kidder, Lawrence Livermore Laboratory preprint UCRL-74040 (1972).Google Scholar
  23. 18.
    R. L. Stenzel, A. Y. Wong and H. C. Kim, Phys. Rev. Letters 32, 654 (1973).ADSCrossRefGoogle Scholar
  24. 19.
    E. J. Valeo and E. G. Estabrook, Lawrence Livermore Laboratory preprint UCRL-75936 (1974).Google Scholar
  25. 20.
    D. Forslund, J. Kindel and E. Lindman, Phys. Rev. Letters 30, 739 (1973).ADSCrossRefGoogle Scholar
  26. 21.
    W. L. Kruer, K. Estabrook and K. Sinz, Nuclear Fusion 13, 952 (1973).CrossRefGoogle Scholar
  27. 22.
    C. S. Liu, M. N. Rosenbluth, R. B. White, Phys. Fluids 17, 1211 (1974).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • W. L. Kruer
    • 1
  1. 1.Lawrence Livermore LaboratoryUniversity of CaliforniaLivermoreUSA

Personalised recommendations