Advertisement

Instabilities of Matter in Strong External Fields and at High Density

  • Abraham Klein
  • Johann Rafelski
Part of the Studies in the Natural Sciences book series (SNS, volume 5)

Abstract

In the recent literature, there have been a number of theoretical studies of new phenomena involving the instability of the ground state (sometimes called the vacuum state) of various fundamental forms of matter under unusual perturbations. In this paper we consider in detail two examples of instability under the application of Coulomb fields of superheavy nuclei, against the emission of positrons and the creation of a condensate of charged pion pairs. The former may occur for atomic number Z ∿ 170, whereas the latter requires Z > 103. The theory of possible forms of pion condensation inside nuclear matter and neutron star matter is also discussed. By careful attention to fundamentals, an effort is made to clarify some of the controversy now raging in the literature concerning these speculations.

Keywords

Neutron Star Nuclear Matter Vacuum Polarization Stable Vacuum Neutral Pion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Peiper and W. Greiner, Z. Physik 218 (1969) 327.ADSCrossRefGoogle Scholar
  2. 2.
    B. Muller, H. Peitz, J. Rafelski and W. Greiner, Phys. Rev. Letters 28 (1972) 1235.ADSCrossRefGoogle Scholar
  3. 3.
    B. Müller, J. Rafelski and W. Greiner, Z. Physik 251 (1972) 62.CrossRefGoogle Scholar
  4. 4.
    B. Müller, J. Rafelski, and W. Greiner, Z. Physik 257 (1972) 183.ADSCrossRefGoogle Scholar
  5. 5.
    H. Peitz, B. Müller, J. Rafelski and W. Greiner, Lett. Nuovo Cimento 8 (1973) 37. Preprint, U. of Frankfurt, 1973.CrossRefGoogle Scholar
  6. 6.
    J. Rafelski, B. Müller, W. Greiner, The Charged Vacuum in Overcritical Fields, to be published in Nuclear Physics.Google Scholar
  7. 7.
    V. S. Popov, Yad. Fiz 12 (1970 429 [Translation: Sov. J. of Nucl. Phys. 12, (1971) 235].Google Scholar
  8. 8.
    V. S. Popov, Zh. Eksp. Teor. Fiz. 59 (1970) 965 [Translation: Soviet Physics JETP 32, (1972 526].Google Scholar
  9. 9.
    Ya. B. Zel’dovich and V. S. Popov, Usp. Fiz Nauk 105, 3 (1971)[Sov. Phys. Usp. 14, 6 (1972)].Google Scholar
  10. 10.
    L. Fulcher and A. Klein, Phys. Rev. D8 (1973) 2455.ADSGoogle Scholar
  11. 11.
    L. Fulcher and A. Klein, to be published in Annals of Physics.Google Scholar
  12. 12.
    A. B. Migdal, Zh. Eksp. Teor. Fiz. 61 (1971) 2209 [Sov. Phys. JETP 34 (1972) 1184]. Our treatment differs in a number of technical aspects with the work of this reference.Google Scholar
  13. 13.
    A. B. Migdal, Physics Letters 45B (1973) 448.ADSGoogle Scholar
  14. 14.
    A. B. Migdal, Phys. Rev. Letters 31 (1973) 257.ADSCrossRefGoogle Scholar
  15. 15.
    A. B. Migdal, Nucl. Phys. A210 (1973) 421.ADSGoogle Scholar
  16. 16.
    A. B. Migdal, Phys. Letters 47B (1973) 96.ADSGoogle Scholar
  17. 17.
    R. F. Sawyer and D. J. Scalapino, Phys. Rev. D7 (1973) 953.ADSGoogle Scholar
  18. 18.
    R. F. Sawyer and A. C. Yao, Phys. Rev. D7 (1973) 1579.ADSGoogle Scholar
  19. 19.
    R. F. Sawyer, Phys. Rev. Letters 31 (1973) 1556.ADSCrossRefGoogle Scholar
  20. 20.
    G. Baym, Phys. Rev. Letters 30 (1973) 1340.ADSCrossRefGoogle Scholar
  21. 21.
    G. Baym and E. Flowers, submitted to Nuclear Physics.Google Scholar
  22. 22.
    S. Barshay, G. Vagradov, and G. E. Brown, Phys. Letters 43B (1973) 359.ADSGoogle Scholar
  23. 23.
    S. Barshay and G. E. Brown, Phys. Letters 47B (1973) 107.ADSGoogle Scholar
  24. 24.
    V. Fano, Phys. Rev. 124 (1961) 1866.ADSMATHCrossRefGoogle Scholar
  25. 25.
    M. L. Goldberger and K. M. Watson, Collision Theory (John Wiley and Sons, Inc., New York, 1964) Chap. 8.MATHGoogle Scholar
  26. 26.
    E. H. Wichmann and N. M. Kroll, Phys. Rev. 101 (1956) 843.MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    H. Feshbach and F. Villars, Rev. Mod. Phys. 30 (1958) 24. Our representation differs by rotation in T space from the one given in this paper.MathSciNetADSMATHCrossRefGoogle Scholar
  28. 28.
    H. Snyder and J. Weinberg, Phys. Rev. 57 (1940) 307.ADSCrossRefGoogle Scholar
  29. 29.
    L. I. Schiff, H. Snyder and J. Weinberg, Phys. Rev. 52 (1940) 315.ADSCrossRefGoogle Scholar
  30. 30.
    C. B. Dover, J. Hüfner, and R. H. Lemmer, Ann. Phys. (N.Y.) 66 (1971) 248.ADSCrossRefGoogle Scholar
  31. 31.
    C. B. Dover, Ann. Phys. (N.Y.) 79 (1973).Google Scholar
  32. 32.
    H. A. Bethe, Phys. Rev. Lett. 30 (1973) 105.ADSCrossRefGoogle Scholar
  33. 33.
    J. M. Eisenberg and H. J. Weber, Phys. Lett 45B (1973) 110.ADSGoogle Scholar
  34. 34.
    J. Hüfner and C. Mahaux, Ann. Phys. 73 (1972), 525.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Abraham Klein
    • 1
  • Johann Rafelski
    • 1
  1. 1.Department of PhysicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations