Advertisement

Spin-Label Studies of Membranes

  • Betty Jean Gaffney
  • Shaw-Chen Chen

Abstract

The development of electron paramagnetic resonance (EPR) spectroscopy preceded by more than a decade its application to a class of experiments referred to generally as spin-labeling. During this early period, the theoretical basis for the paramagnetic resonance spectra of numerous organic free radicals was established. These theoretical principles were applied to the determination of the structure and properties of paramagnetic species which occur naturally or are produced chemically or physically in biological materials. The paramagnetic species studied included intermediates in photosynthesis, biochemical reactions of metalloproteins, and free radicals in radiation-damaged tissues. Anisotropies in the EPR spectral parameters of organic free radicals were found to be of the order of a few tenths to a few hundred megahertz (MHz = 106 cps). The magnitude of these anisotropies suggested that spectral changes should be observed for organic free radicals with molecular motions occurring in the range from about 10-6 to 10-9 s. (The relation between spectral anisotropy and the effects of motion is discussed in more detail in section 3.3.) Because the rotational correlation times τ e (where τ e = 4πηr 3 /(3kT) for spherical molecules with radius r) for molecules, in aqueous solutions, of 1000 to 1,000,000 daltons fall within this time scale, problems involving the rotational motion of macromolecules are among those obviously amenable to solution by paramagnetic resonance spectroscopy.

Keywords

Lipid Bilayer Electron Paramagnetic Resonance Spectrum Spin Label Rotational Correlation Time Nitroxide Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bretscher, M. S., 1973, Membrane structure: Some general principles, Science 181: 622.PubMedGoogle Scholar
  2. Briere, R., Lemaire, H., and Rassat, A., 1965, Synthèse et étude de radicaux libres stables pipéridiniques et pyrolidinique, Bull. Soc. Chim. France 32: 3273.Google Scholar
  3. Briere, R., Lemaire, H., and Rassat, A., 1965, Synthèse et étude de radicaux libres stables pipéridiniques et pyrolidinique, Bull. Soc. Chim. France 32: 3273.Google Scholar
  4. Brulet, P., and McConnell, H. M., 1975, Magnetic resonance spectra of membranes, Proc. Nat. Acad. Sci. 72: 1451.PubMedGoogle Scholar
  5. Buchachenko, A. L., 1965, Stable Radicals, Consultants Bureau, New York.Google Scholar
  6. Cadenhead, D. A., and Muller-Landau, F., 1973, Pure and mixed monomolecular films of 12-nitroxide stearate, Biochim. Biophys. Acta 307: 279.PubMedGoogle Scholar
  7. Cadenhead, D. A., and Muller-Landau, F., 1973, Pure and mixed monomolecular films of 12-nitroxide stearate, Biochim. Biophys. Acta 307: 279.PubMedGoogle Scholar
  8. Cadenhead, D. A., and Muller-Landau, F., 1973, Pure and mixed monomolecular films of 12-nitroxide stearate, Biochim. Biophys. Acta 307: 279.PubMedGoogle Scholar
  9. Caron, F., Mateu, L., Rigny, P., and Azerad, R., 1974, Chain motions in lipid-water and protein-lipid water phases: A spin-label study and x-ray diffraction study, J. Mol. Biol. 85: 279.PubMedGoogle Scholar
  10. Carrington, A., and McLachlan, A.D., 1967, Introduction to Magnetic Resonance, Harper and Row, New York.Google Scholar
  11. Chapman, D., Urbina, J., and Keough, K., 1973, Biomembrane phase transitions, J. Biol. Chem. 249: 2512.Google Scholar
  12. Dehlinger, P. J., Jost, P. C., and Griffith, O. H., 1974, Lipid binding to the amphipathic membrane protein cytochrome b 5, Proc. Nat. Acad. Sci. 71: 2280.PubMedGoogle Scholar
  13. Devaux, P., and McConnell, H. M., 1974a, Lateral diffusion in spin-labeled phosphatidylcholine multilayers, J. Am. Chem. Soc. 94: 4475.Google Scholar
  14. Devaux, P., and McConnell, H. M., 1974b, Equality of the rates of lateral diffusion of phosphatidyl ethanolamine and phosphatidylcholine spin labels in rabbit sarcoplasmic reticulum, Ann. N.Y. Acad. Sci. 222: 489.Google Scholar
  15. Devaux, P., Scandella, C. J., and McConnell, H. M., 1973, Spin-spin interactions between spin-labeled phospholipids incorporated into membranes, J. Magn. Res. 9: 474.Google Scholar
  16. Devaux, P., Scandella, C. J., and McConnell, H. M., 1973, Spin-spin interactions between spin-labeled phospholipids incorporated into membranes, J. Magn. Res. 9: 474.Google Scholar
  17. Dix, J. A., Diamond, J. M. and Kivelson, D., 1974, Translational diffusion coefficient and partition coefficient of a spin-labeled solute in lecithin bilayer membranes, Proc. Nat. Acad. Sci. 71: 474.PubMedGoogle Scholar
  18. Forrester, A. R., Hay, J. M., and Thomson, R. H., 1968, Organic Chemistry of Stable Free Radicals, Academic Press, New York.Google Scholar
  19. Fuchs, P., Parola, A., Robbins, P. W., and Blout, E. R., 1975, Fluorescence polarization and viscosities of membrane lipids of 3T3 cells, Proc. Nat. Acad. Sci. 72:3351.Google Scholar
  20. Fuchs, P., Parola, A., Robbins, P. W., and Blout, E. R., 1975, Fluorescence polarization and viscosities of membrane lipids of 3T3 cells, Proc. Nat. Acad. Sci. 72:3351.Google Scholar
  21. Gaffney, B. J., 1975a, The chemistry of spin labels, in: Spin-labeling: Theory and Applications ( L. J. Berliner, ed.), pp. 183–238, Academic Press, New York.Google Scholar
  22. Gaffney, B. J., 19756, Practical considerations for the calculation of order parameters for fatty acid spin labels in membranes, in: Spin-Labeling: Theory and Applications (L. J. Berliner, ed.), pp. 567–571, Academic Press, New York.Google Scholar
  23. Gaffney, B. J., 1975c, Fatty acid chain flexibility in the membranes of normal and transformed fibroblasts, Proc. Nat. Acad. Sci. 72: 664.PubMedGoogle Scholar
  24. Gaffney, B. J., and Lin, D. C., 1975, Spin-label measurements of membrane-bound enzymes, in: Membrane-Bound Enzymes (A. Martonosi, ed.), Plenum Press, New York.Google Scholar
  25. Gaffney, B. J., and McConnell, H. M., 1974, The paramagnetic resonance spectra of spin labels in phospholipid membranes, J. Magn. Res. 16: 1.Google Scholar
  26. Gaffney, B. J., and McNamee, C., 1974, Spin-label measurements in membranes, in: Methods in Enzymology ( S. Fleischer and L. Packer, eds.), Academic Press, New York.Google Scholar
  27. Gaffney-McFarland, B., and McConnell, H. M., 1971, Bent fatty acid chains in lecithin bilayers, Proc. Nat. Acad. Sci. 68: 1274.Google Scholar
  28. Grant, C. W. M., and McConnell, H. M., 1973, Fusion of phospholipid vesicles with viable Acholeplasma laidlawii, Proc. Nat. Acad. Sci. 70: 1238.PubMedGoogle Scholar
  29. Grant, C. W. M., and McConnell, H. M., 1974, Glycophorin in lipid bilayers, Proc. Nat. Acad. Sci. 71: 4653.PubMedGoogle Scholar
  30. Grant, C. W. M., and McConnell, H. M., 1974, Glycophorin in lipid bilayers, Proc. Nat. Acad. Sci. 71: 4653.PubMedGoogle Scholar
  31. Griffith, O. H., and Waggoner, A. S., 1969, Nitroxide free radicals: spin labels for probing biomolecular structure, Acct. Chem. Res. 2: 17.Google Scholar
  32. Hamilton, C. L., and McConnell, H. M., 1968, Spin labels, in: Structural Chemistry and Molecular Biology ( A. Rich and N. Davidson, eds.), W. H. Freeman and Co., San Francisco.Google Scholar
  33. Hinz, H. J., and Sturtevant, J. M., 1972, Calorimetric studies of dilute aqueous suspensions of bilayers formed from synthetic L-a-lecithins, J. Biol. Chem. 247: 6071.PubMedGoogle Scholar
  34. Hinz, H. J., and Sturtevant, J. M., 1972, Calorimetric studies of dilute aqueous suspensions of bilayers formed from synthetic L-a-lecithins, J. Biol. Chem. 247: 6071.PubMedGoogle Scholar
  35. Hoffmann, A. K., Feldman, A. M., and Gelblum, E., 1964, Reactions of organic alkali compounds with nitro compounds: a new synthesis of nitroxides, J. Am. Chem. Soc. 86: 646.Google Scholar
  36. Hong, K., and Hubbell, W. L., 1972, Preparation and properties of phospholipid bilayers containing rhodopsin, Proc. Nat. Acad. Sci. 69: 2617.PubMedGoogle Scholar
  37. Hong, K., and Hubbell, W. L., 1973, Lipid requirements for rhodopsin regenerability, Biochemistry, 12: 4517.PubMedGoogle Scholar
  38. Hubbell, W. L., and McConnell, H. M., 1968, Spin-label studies of the excitable membranes of nerve and muscle, Proc. Nat. Acad. Sci. 61: 12.PubMedGoogle Scholar
  39. Hubbell, W. L., and McConnell, H. M., 1969a, Motion of steroid spin labels in membranes, Proc. Nat. Acad. Sci. 63: 16.PubMedGoogle Scholar
  40. Hubbell, W. L., and McConnell, H. M., 1969a, Motion of steroid spin labels in membranes, Proc. Nat. Acad. Sci. 63: 16.PubMedGoogle Scholar
  41. Hubbell, W. L., and McConnell, H. M., 1971, Molecular motion in spin-labeled phospholipids and membranes, J. Am. Chem. Soc. 93: 314.PubMedGoogle Scholar
  42. Huestis, W. H., and McConnell, H. M., 1974, A functional acetylcholine receptor in the human erythrocyte, Biochem. Biophys. Res. Commun. 57: 726.PubMedGoogle Scholar
  43. Humphries, G. M. K., and McConnell, H. M., 1975, Antigen mobility in membranes and complement-mediated immune attack, Proc. Nat. Acad. Sci. 72: 2483.Google Scholar
  44. Hyde, J. S., and Dalton, L. R., 1972, Very slowly tumbling spin labels: Adiabatic rapid passage, Chem. Phys. Lett. 16: 568.Google Scholar
  45. Hyde, J. S., and Thomas, D. D., 1973, New EPR methods for the study of very slow motion: Application to spin-labeled hemoglobin, Ann. N.Y. Acad. Sci. 222: 680.PubMedGoogle Scholar
  46. Ito, T., and Ohnishi, S., 1974, Cat+-induced lateral phase separations in phosphatidic acid—phosphatidylcholine membranes, Biochim. Biophys. Acta 352: 29.PubMedGoogle Scholar
  47. Ito, T., Ohnishi, S., Ishinaga, M., and Kito, M., 1975, Synthesis of a new phosphatidylserine spin label and calcium-induced lateral phase separation in phosphatidylserinephosphatidylcholine membranes, Biochemistry 14: 3064.Google Scholar
  48. Jacobsen, K., and Papahadjopoulos, D., 1975, Phase transition and phase separation in phospholipid membranes induced by changes in temperature, pH, and concentration of bivalent cations, Biochemistry 14: 152.Google Scholar
  49. Jost, P., Waggoner, A. S., and Griffith, O. H., 1971a, Spin labeling and membrane structure, in: Structure and Function of Biological Membranes ( L. I. Rothfield, ed.), p. 83, Academic Press, New York.Google Scholar
  50. Jost, P. C., Libertini, L. J., and Hebert, V. C., 1971b, Lipid spin labels in lecithin multi-layers. A study of motion along fatty. acid chains, J. Mol. Biol. 59: 77.PubMedGoogle Scholar
  51. Jost, P. C., Griffith, O. H., Capaldi, R. A., and Vanderkooi, G., 1973, Evidence for boundary lipid in membranes, Proc. Nat. Acad. Sci. 70: 480.PubMedGoogle Scholar
  52. Keana, J. F. W., Keana, S. B., and Beetham, D., 1967, A new versatile ketone spin label, J. Am. Chem. Soc. 89: 3055.Google Scholar
  53. Kleemann, W., and McConnell, H. M., 1976, Interactions of proteins and cholesterol with lipids in bilayer membranes, Biochim. Biophys. Acta 419: 206.PubMedGoogle Scholar
  54. Kleeman, W., Grant, C. W. M., and McConnell, H. M., 1974, Lipid phase separations and protein distribution in membranes, J. Supramol. Struct. 2: 609.Google Scholar
  55. Kornberg, R. M., and McConnell, H. M., 1971, Inside—outside transitions of phospholipids in vesicle membranes, Biochemistry 10: 1111.PubMedGoogle Scholar
  56. Kury, P., and McConnell, H. M., 1975, Regulation of membrane flexibility and lipid fluidity in human erythrocytes, Biochemistry 14: 2798.PubMedGoogle Scholar
  57. Kury, P. G., Ramwell, P. W., and McConnell, H. M., 1974, The effect of prostaglandine El and Ez on the human erythrocyte as monitored by spin labels, Biochim. Biophys. Res. Commun. 56: 478.Google Scholar
  58. Lebedev, O. L., and Kazarnovskii, S. N., 1959, Intermediate products of oxidation of amines by pertungstate, Papers on Chemical Technology 2:649 (CA: 56: 15479f ).Google Scholar
  59. Lee, A. G., 1975, Fluorescence studies of chlorophyll a incorporated into lipid mixtures and the interpretation of phase diagrams, Biochim. Biophys. Acta 413: 11.PubMedGoogle Scholar
  60. Lee, A. G., Birdsall, N. J. M., and Metcalfe, J. C., 1973, The measurement of fast lateral diffusion of lipids in vesicles and in biological membranes by ’H nuclear magnetic resonance, Biochemistry 12: 1650.PubMedGoogle Scholar
  61. Lee, A. G., Birdsall, N. J. M., and Metcalfe, J. C., 1974a, Nuclear magnetic relaxation and the biological membrane, in: Methods in Membrane Biology ( E. D. Korn, ed.), Plenum Press, New York.Google Scholar
  62. Lee, A. G., Birdsall, N. J. M., Metcalfe, J. C., Toon, P. A., and Warren, G. B., 1974b, Clusters in lipid bilayers and the interpretation of thermal effects in biological membranes, Biochemistry 13:3699.Google Scholar
  63. Lee, A. G., Birdsall, N. J. M., Metcalfe, J. C., Toon, P. A., and Warren, G. B., 1974b, Clusters in lipid bilayers and the interpretation of thermal effects in biological membranes, Biochemistry 13:3699.Google Scholar
  64. Levine, Y. K., Lee, A. G., Birdsall, N. J. M., Metcalfe, J. C., and Robinson, J. D., 1973, The interaction of paramagnetic ions and spin labels with lecithin bilayers, Biochim. Biophys. Acta 291: 592.PubMedGoogle Scholar
  65. Levine, Y. K., Lee, A. G., Birdsall, N. J. M., Metcalfe, J. C., and Robinson, J. D., 1973, The interaction of paramagnetic ions and spin labels with lecithin bilayers, Biochim. Biophys. Acta 291: 592.PubMedGoogle Scholar
  66. Libertini, L. J., and Griffith, O. H., 1970, Orientation dependence of the electron spin resonance spectrum of di-t-butyl nitroxide, J. Chem. Phys. 53: 1359.Google Scholar
  67. Libertini, L. J., Waggonner, A. S., Jost, P. C., and Griffith, O. H., 1969, Orientation of lipid spin labels in lecithin multilayers, Proc. Nat. Acad. Sci. 64: 13.PubMedGoogle Scholar
  68. Libertini, L. J., Burke, C. A., Jost, P. C., and Griffith, O. H., 1974, An orientation distribution function for interpreting ESR line shapes of ordered spin labels, J. Magn. Res. 15: 460.Google Scholar
  69. Linden, C., Wright, K. L., McConnell, H. M., and Fox, C. F., 1973, Phase separations and glucoside uptake in E. coli fatty acid auxotrophs, Proc. Nat, Acad. Sci. 70: 2271.Google Scholar
  70. Maeda, T., Asano, A., Ohki, K., Okada, Y., and Ohnishi, S., 1975, A spin-label study on fusion of red blood cells induced by hemaglutinating virus of Japan, Biochemistry 14: 3736.PubMedGoogle Scholar
  71. Mason, R. P., Polnaszek, C. F., and Freed, J. H., 1974, Comments on the interpretation of ESR spectra of spin labels undergoing very anisotropic rotational reorientation. J. Phys. Chem. 78: 1324.Google Scholar
  72. McCalley, R. C., Shimshick, E. J., and McConnell, H. M., 1972, The Effect of slow ro- tational motion on paramagnetic resonance spectra, Chem. Phys. Lett. 13: 115.Google Scholar
  73. McConnell, H. M., 1958, Reaction rates by nuclear magnetic resonance, J. Chem. Phys. 28: 230.Google Scholar
  74. McConnell, H. M., 1970, Molecular motion in biological membranes, in: The Neurosciences: Second Study Program ( F. O. Schmitt, ed.), p. 697, Rockefeller University Press, New York.Google Scholar
  75. McConnell, H. M., 1971, Spin-label studies of cooperative oxygen binding to hemoglobin, Ann. Rev. Biochem. 40: 227.PubMedGoogle Scholar
  76. McConnell, H. M., 1975, Molecular motion in biological membranes, in: Spin-Labeling: Theory and Applications ( L. J. Berliner, ed.), pp. 525–560, Academic Press, New York.Google Scholar
  77. McConnell, H. M., 1976, Role of lipid in membrane structure and function, in: Cellular Membranes and Tumor Cell Behavior,Williams and Wilkins, Baltimore, in press.Google Scholar
  78. McConnell, H. M., and Gaffney-McFarland, B., 1970, Physics and chemistry of spin labels, Quart. Revs. Biophys. 3: 91.Google Scholar
  79. McConnell, H. M., and Gaffney-McFarland, B., 1970, Physics and chemistry of spin labels, Quart. Revs. Biophys. 3: 91.Google Scholar
  80. McConnell, H. M., and Taupin, C., 1972, Membrane fusion, in: Mitochondria Biomembranes,p. 219, North Holland Publishers, Amsterdam.Google Scholar
  81. Nagle, J. F., 1973, Lipid bilayer phase transition, density measurements and theory, Proc. Nat. Acad. Sci. 70: 3443.PubMedGoogle Scholar
  82. Nagle, J. F., 1973, Lipid bilayer phase transition, density measurements and theory, Proc. Nat. Acad. Sci. 70: 3443.PubMedGoogle Scholar
  83. Ohnishi, S., and Ito, T., 1973, Clustering of lecithin molecules in phosphatidylserine membranes induced by calcium ion binding to phosphatidylserine, Biochem. Biophys. Res. Commun. 51: 132.PubMedGoogle Scholar
  84. Ohnishi, S., and Ito, T., 1973, Clustering of lecithin molecules in phosphatidylserine membranes induced by calcium ion binding to phosphatidylserine, Biochem. Biophys. Res. Commun. 51: 132.PubMedGoogle Scholar
  85. Ohnishi, S., and Ito, T., 1974, Calcium induced phase separations in phosphatidylserinephosphatidylcholine membranes, Biochemistry 13: 881.Google Scholar
  86. Phillips, M. C., Williams, R. M., and Chapman, D., 1969, On the nature of hydrocarbon chain motions in lipid liquid crystals, Chem. Phys. Lipids 3: 234.Google Scholar
  87. Poggi, G., and Johnson, C. S., 1970, Factors involved in the determination of rotational correlation time for spin labels, J. Magn. Res. 3: 436.Google Scholar
  88. Ranck, J. L., Mateu, L., Sadler, D. M., Tardieu, A., Gulik-Krzywicki, T., and Luzati, V., 1974, Order—disorder transitions of the hydrocarbon chains of lipids, J. Mol. Biol. 85: 249.PubMedGoogle Scholar
  89. Rand, R. P., Chapman, D., and Larsson, K., 1975, Tilted hydrocarbon chains of dipalmitoyl lecithin become perpendicular to bilayer before melting, Biophys. J. 15: 1117.PubMedGoogle Scholar
  90. Rassat, A., 1971, Application of ESR to conformational analysis, Pure and Applied Chem. 25: 623.Google Scholar
  91. Robbins, P. W., Wickus, G. G., Branton, P. E., Gaffney, B. J., Hirschberg, C. B., Fuchs, P., and Blumberg, P., 1974, Rous sarcoma virus transformation of the chick fibroblast cell surface, Cold Spring Harbor Symposium 39: 1173.Google Scholar
  92. Roseman, M., Litman, B. J., and Thompson, T. E., 1975, Trans bilayer exchange of phosphatidylethanolamine for phosphatidylcholine and N-acetimidoylphosphatidylethanolamine in single-walled bilayer vesicles, Biochem. 14: 4826.Google Scholar
  93. Rottem, S., and Samuni, A., 1973, Effect of proteins on the motion of spin-labeled fatty acids in mycoplasma membranes, Biochim. Biophys. Acta 298: 32.PubMedGoogle Scholar
  94. Rottem, S., Cirillo, V. P., De Kruyff, B., Shinitzky, M., and Razin, S., 1973, Cholesterol in mycoplasma membranes; correlation of enzymatic and transport activities with physical state of lipids in membranes of mycoplasma mycoides var. capri adapted to growth with low cholesterol concentrations, Biochim. Biophys. Acta 323: 509.PubMedGoogle Scholar
  95. Rottem, S., Hasin, M., and Razin, S., 1973, Binding of proteins to mycoplasma membranes, Biochim. Biophys. Acta 298: 876.PubMedGoogle Scholar
  96. Rottem, S., Hubbell, W. L., Hayflick, L., and McConnell, H. M., 1970, Motion of fatty acid spin labels in the plasma membrane of mycoplasma, Biochim. Biophys. Acta 219: 104.PubMedGoogle Scholar
  97. Rousselet, A., Guthmann, C., Matricon, J., Bienvenue, A., and Devaux, P. F., 1975, Study of the transverse diffusion of spin-labeled phospholipids in biological membranes. I. Human red blood cells, Biochim. Biophys. Acta 426: 357.Google Scholar
  98. Rozantsev, E. G., 1970, Free Nitroxyl Radicals (B. J. Hazzard, trans.) Plenum Press, New York.Google Scholar
  99. Sackmann, E., and Trauble, H., 1972a, Studies of the crystalline—liquid crystalline phase transition of lipid model membranes. I. Use of spin labels and optical probes as indicators of the phase transition, J. Am. Chem. Soc. 94: 4482.PubMedGoogle Scholar
  100. Sackmann, E., and Trauble, H., 1972a, Studies of the crystalline—liquid crystalline phase transition of lipid model membranes. I. Use of spin labels and optical probes as indicators of the phase transition, J. Am. Chem. Soc. 94: 4482.PubMedGoogle Scholar
  101. Sackmann, E., and Trauble, H., 1972b, Studies of the crystalline—liquid crystalline phase transition of lipid model membranes. II. Analysis of electron spin resonance spectra of steroid labels incorporated into lipid membranes, J. Am. Chem. Soc. 94: 4492.PubMedGoogle Scholar
  102. Scandella, C. J., Devaux, P., and McConnell, H. M., 1972, Rapid lateral diffusion in rabbit sarcoplasmic reticulum, Proc. Nat. Acad. Sci. 69: 2056.PubMedGoogle Scholar
  103. Scandella, C. J., Devaux, P., and McConnell, H. M., 1972, Rapid lateral diffusion in rabbit sarcoplasmic reticulum, Proc. Nat. Acad. Sci. 69: 2056.PubMedGoogle Scholar
  104. Seelig, J., 1972, Motion of spin-labeled fatty acids in membrane structures, in: Biomembranes 3 ( L. A. Manson, ed.), Plenum Press, New York.Google Scholar
  105. Seelig, A., and Seelig, J., 1974, The dynamic structure of fatty acid chains in a phospholipids bilayer measured by deuterium magnetic resonance, Biochemistry 13: 4839.PubMedGoogle Scholar
  106. Sefton, B. M., and Gaffney, B. J., 1974, Effect of the viral proteins on fluidity of the membranes lipids in Sindbis virus, J. Mol. Biol. 90:343.Google Scholar
  107. Shimshick, E. J., and McConnell, H. M., 1973a, Lateral phase separations in phospholipid membranes, Biochemistry 12: 2351.PubMedGoogle Scholar
  108. Shimshick, E. J., and McConnell, H. M., 1973b, Lateral phase separations in binary mixtures of cholesterol and phospholipids, Biochem. Biophys. Res. Commun. 53: 446.PubMedGoogle Scholar
  109. Shinitzky, M., and Barenholz, Y., 1974, Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicetylphosphate, J. Biol. Chem. 249: 2652.PubMedGoogle Scholar
  110. Shinitzky, M., and Inbar, M., 1974, Difference in microviscosity induced by cholesterol levels in the surface membrane lipid layer of normal lymphocytes and malignant lymphoma cells, J. Mol. Biol. 85: 603.PubMedGoogle Scholar
  111. Sinensky, M., 1974, Homeoviscous adaption — a homeostatic process that regulates the viscosity of membrane lipids in E. coli, Proc. Nat. Acad. Sci. 71:522.Google Scholar
  112. Slichter, C. P., 1963, Principles of Magnetic Resonance,Harper and Row, New York. Smigel, M. D., Dalton, L. R., Hyde, J. S., and Dalton, L. A., 1974, Investigation of very slow tumbling spin labels by nonlinear spin resonance techniques: Theory and experiment for stationary electron-electron double resonance, Proc. Nat. Acad. Sci. 71:1925.Google Scholar
  113. Stone, T. J., Buckman, T., Nordio, P. L., and McConnell, H. M., 1965, Spin-labeled biomolecules, Proc. Nat. Acad. Sci. 54: 1010.PubMedGoogle Scholar
  114. Swartz, H. M., Bolton, J. R., and Borg, D. C., 1972, Biological Applications of Electron Spin Resonance,Wiley-Interscience, New York.Google Scholar
  115. Thomas, D. D., and McConnell, H. M., 1974, Calculation of paramagnetic resonance spectra sensitive to very slow rotational motion, Chem. Phys. Lett. 25: 470.Google Scholar
  116. Thomas, D. D., and McConnell, H. M., 1974, Calculation of paramagnetic resonance spectra sensitive to very slow rotational motion, Chem. Phys. Lett. 25: 470.Google Scholar
  117. Trauble, H., and Sackmann, E., 1972, Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. III. Structure of a steroid-lecithin system below and above the lipid phase transition, J. Am. Chem. Soc. 94: 4499.PubMedGoogle Scholar
  118. Trudell, J. R., Hubbell, W. L., and Cohen, E. N., 1973a, The effect of two inhalation anesthetics on the order of spin-labeled phospholipid vesicles, Biochim. Biophys. Acta 291: 321.PubMedGoogle Scholar
  119. Trudell, J. R., Hubbell, W. L., and Cohen, E. N., 1973b, Pressure reversal of inhalation anesthetic-induced disorder in spin-labeled phospholipid vesicles, Biochim. Biophys. Actd 291: 328.Google Scholar
  120. Trudell, J. R., Payan, D. G., Chin, J. H., and Cohen, E. N., 1974a, The effect of pressure on the phase diagram of mixed dipalmitoylphosphatidylcholine-dimyristoylphosphatidylcholine bilayers, Biochim. Biophys. Acta 373: 141.PubMedGoogle Scholar
  121. Trudell, J. R., Payan, D. G., Chin, J. H., and Cohen, E. N., 1974a, The effect of pressure on the phase diagram of mixed dipalmitoylphosphatidylcholine-dimyristoylphosphatidylcholine bilayers, Biochim. Biophys. Acta 373: 141.PubMedGoogle Scholar
  122. Trudell, J. R., Payan, D. G., Chin, J. H., and Cohen, E. N., 1975, The antagonistic effect of an inhalation anesthetic and high pressure on the phase diagram of mixed dipalmitoy-dimyristoylphosphatidylcholine bilayers, Proc. Nat. Acad. Sci. 72: 210.PubMedGoogle Scholar
  123. Urry, D. W., 1971, The gramicidin A transmembrane channel: a proposed m (L,D) helix, Proc. Nat. Acad. Sci. 68: 672.PubMedGoogle Scholar
  124. Van, S. P., Birrell, G. B., and Griffith, O. H., 1974, Rapid anisotropic motion of spin labels. Models for motion averaging of the ESR parameters, J. Magn. Res. 15: 444.Google Scholar
  125. Waggoner, A. S., Griffith, O. H., and Cristensen, C. R., 1967, Magnetic resonance of nitroxide probes in micelle-containing solutions, Proc. Nat. Acad. Sci. 57: 1198.PubMedGoogle Scholar
  126. Warren, G. B., Toon, P. A., Birdsall, N. J. M., Lee, A. G., and Metcalfe, J. C., 1974, Reconstitution of a calcium pump using defined membrane components, Proc. Nat. Acad. Sci. 71: 622.PubMedGoogle Scholar
  127. Warren, G. B., Houslay, M. D., Metcalfe, J. C., and Birdsall, N. J. M., 1975, Cholesterol is excluded from the phospholipid annulus surrounding an active calcium transport protein, Nature 255: 684.PubMedGoogle Scholar
  128. Williams, J. C., Mehlhorn, R., and Keith, A. D., 1971, Synthesis and novel uses of nitroxide motion probes, Chem. Phys. Lipids 7: 207.Google Scholar
  129. Wisnieski, B. J., Parkes, J. G., Huang, Y. O., and Fox, C. F., 1974, Physical and physiological evidence for two phase transitions in cytoplasmic membranes of animal cells, Proc. Nat. Acad. Sci. 71: 4381.PubMedGoogle Scholar
  130. Wu, S. H. W., and McConnell, H. M., 1975, Phase separations in phospholipid membranes, Biochemistry 14: 847.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Betty Jean Gaffney
    • 1
  • Shaw-Chen Chen
    • 1
  1. 1.Department of ChemistryJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations