Advertisement

Recent Methods for the Elucidation of Lipid Structure

  • R. A. Klein
  • P. Kemp

Abstract

The first essentially correct structure for a phosphatidylcholine was published by Strecker in 1868. Indeed the structure shown corresponds, perhaps fortuitously, to the single molecular species 1-palmitoyl-2-oleoyl-3-sn-glyceryl-phosphorylcholine. The precise position of the two fatty acids was still under debate 90 years later (Tattrie, 1959; Hanahan et al., 1960; de Haas et al., 1960; de Haas and van Deenen, 1961). This was a truly remarkable achievement, given that Strecker possessed none of the highly sensitive or selective analytical methods currently available.

Keywords

Fatty Acid Methyl Ester Lipid Structure Recent Method Equivalent Chain Length Glyceryl Ether 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aasen, A. J., Hofstetter, H. H., Iyengar, B. T. R., and Holman, R. T., 1971, Identification and analysis of wax esters by mass spectrometry, Lipids 6: 502.Google Scholar
  2. Aasen, A. J., Lauer, W. M., and Holman, R. T., 1970, Mass spectrometry of triglycerides and elucidation of fragmentation mechanisms, Lipids 5: 869.PubMedGoogle Scholar
  3. Abernethy, D., Fitzgerald, T. J., and Walaszek, E. J., 1974, NMR investigation of histamine—phospholipid interaction, Biochem. Biophys. Res. Commun. 59: 535.PubMedGoogle Scholar
  4. Ackman, R. G., 1963, Structural correlation of unsaturated fatty acid esters by graphical comparison of gas-liquid chromatographic retention times on a polyester substrate, J. Am. Oil Chem. Soc. 40: 558.Google Scholar
  5. Ackman, R. G., 1972a, Influence of methyl substituent position on retention times in the GLC of higher monomethyl-branched fatty acid esters and hydrocarbons, J. Chromatog. Sci. 10: 243.Google Scholar
  6. Ackman, R. G., 1972b, The analysis of fatty acids and related materials by gas-liquid chromatography, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 12 ( R. T. Holman, ed.), p. 165, Pergamon Press, Oxford.Google Scholar
  7. Ahrens, E. H., 1956, Application of countercurrent distribution to the study of lipids, in: Biochemical Problems of Lipids ( G. Popjak and E. Le Breton, eds.), p. 30, Butter-worths Scientific Publications, London.Google Scholar
  8. Albro, P. W., and Dittmer, J. C., 1968, Determination of the distribution of the aliphatic groups of glyceryl ethers by gas-liquid chromatography of the diacetyl derivatives, J. Chromatog. 38: 230.Google Scholar
  9. Allen, C. F., Good, P., Davis, H. F., Chisum, P., and Fowler, S. D., 1964, Methodology for the separation of plant lipids and application to spinach leaf and chloroplast lamellae, J. Am. Oil Chem. Soc. 43: 223.Google Scholar
  10. Allen, R. R., and Kiess, A. A., 1955, Isomerization during hydrogenation. I. Oleic Acid, J. Am. Oil Chem. Soc. 32: 400.Google Scholar
  11. Allerhand, A., Doddrell, D., and Komoroski, R., 1971, Natural abundance carbon-13 partially relaxed fourier transform nuclear magnetic resonance spectra of complex molecules, J. Chem. Phys. 55: 189.Google Scholar
  12. Almqvist, S. O., Andersson, R., Shahab, Y., and Olsson, K., 1972, Lanthanide induced PMR chemical shifts in triglycerides, Acta Chem. Scand. 26: 3378.PubMedGoogle Scholar
  13. American Oil Chemists Society, Isolated trans isomers infrared spectrophotometric method, Tentative Method Cd 14-61.Google Scholar
  14. Anderson, R. E., Garrett, R. D., Blank, M. L., and Snyder, F., 1969, The quantitative production of aldehydes from O-alk-I-enyl glycerols, Lipids 4: 327.Google Scholar
  15. Anderson, R. L., and Hollenbach, E. J., 1965, Large-scale separation of fatty acid methyl esters by column chromatography on acid-washed Florisil impregnated with silver nitrate, J. Lipid Res. 6: 577.PubMedGoogle Scholar
  16. Andersson, B. A., Heimermann, W. H., and Holman, R. T., 1974, Comparison of pyrrolidides with other amides for mass spectral determination of structure of unsaturated fatty acids, Lipids 9: 443.PubMedGoogle Scholar
  17. Andersson, B. A., and Holman, R. T., 1974, Pyrrolidides for mass spectrometric determination of the position of the double bond in monounsaturated fatty acids, Lipids 9: 185.PubMedGoogle Scholar
  18. Andersson, B. A., Karlsson, K. A., Pascher, I., Samuelsson, B. E., and Steen, G. 0., 1972, Mass spectra of acetyl derivatives of homogeneous cerebrosides (monoglycosyl-ceramides), Chem. Phys. Lipids 9: 89.PubMedGoogle Scholar
  19. Andersson, B. A., Christie, W. W., and Holman, R. T., 1975, Mass spectrometric determination of positions of double bonds in polyunsaturated fatty acid pyrrolidides, Lipids 10: 215.Google Scholar
  20. Ando, N., Ando, S., and Yamakawa, T., 1971, The structure and formation mechanism of N-acetone derivatives of phosphatidylethanolamine, J. Biochem. (Tokyo) 70: 341.Google Scholar
  21. Andrews, S. B., Faller, J. W., Gilliam, J. M., and Barrnett, R. J., 1973, Lanthanide ioninduced isotropic shifts and broadening for nuclear magnetic resonance structural analysis of model membranes, Proc. Nat. Acad. Sci. 70: 1814.Google Scholar
  22. Andrieux, A., Dufourcq, J., and Lussan, C., 1972, Conformation du groupe polaire de la phosphatidyl choline en solution aqueuse déterminée par resonance magnétique nucléaire, Comptes Rendus 274D: 2358.Google Scholar
  23. Ansell, G. B!, Dawson, R. M. C., and Hawthorne, J. N., 1973, Form and Function of Phospholipids, Elsevier Publishing Co., Amsterdam.Google Scholar
  24. Aplin, R. T., and Coles, L., 1967, A simple procedure for localization of ethylenic bonds by mass spectrometry, Chem. Commun. 1967: 858.Google Scholar
  25. Arcus, A. E., and Dunckley, G. G., 1961, Chromatography of some lipids on polytetrafluoroethylene, J. Chromatog. 5: 272.Google Scholar
  26. Argoudelis, C. J., and Perkins, E. G., 1968, Determination of double bond position in monounsaturated fatty acids using combination gas chromatography mass spectrometry, Lipids 3: 379.PubMedGoogle Scholar
  27. Arpino, P., Baldwin, M. A., and McLafferty, F. W., 1974, Liquid chromatography mass spectrometry. II. Continuous monitoring, Biomed. Mass. Spectrom. 1: 80.PubMedGoogle Scholar
  28. Arsenault, G. P., Dolhun, J. J., and Biemann, K., 1971, Alternate or simultaneous electron impact—chemical ionization mass spectrometry of gas chromatographic effluent, Anal. Chem. 43: 1720.Google Scholar
  29. Arunga, R. O., and Morrison, W. R., 1971, The structural analysis of wheat flour glycerolipids, Lipids 6: 768.Google Scholar
  30. Arvidson, G. A. E., 1965, Fractionation of naturally occurring lecithins according to degree of unsaturation by thin-layer chromatography, J. Lipid Res. 6: 574.PubMedGoogle Scholar
  31. Arvidson, G. A. E., 1967, Reversed-phase partition thin-layer chromatography of rat liverleci thins to yield eight simple phosphatidyl cholines, J. Lipid Res. 8: 155.PubMedGoogle Scholar
  32. Arvidson, G. A. E., 1968, Structural and metabolic heterogeneity of rat liver glycerophosphatides, Eur, J. Biochem. 4: 478.Google Scholar
  33. Assmann, G., Sokoloski, E. A., and Brewer, H. B., Jr., 1974, 81P nuclear magnetic resonance spectroscopy of native and recombined lipoproteins, Proc. Nat. Acad. Sci. U.S.A. 71: 549.Google Scholar
  34. Audier, H., Borg, S., Fetizon, M., Longevialle, P., Toubiana, R., 1964, Orientation de la fragmentation en spectrometrie de masse par introduction de groupes fonctionnelles. VI. Localisation des liaisons ethyleniques, Bull. Soc. Chim. Fr. 1964: 3034.Google Scholar
  35. Axen, U., Green, K., Horlin, D., and Samuelsson, B., 1971, Mass spectrometric determination of picomole amounts of prostaglandins E 2 and F 2, using synthetic deuterium labelled carriers, Biochem. Biophys. Res. Commun. 45: 519.PubMedGoogle Scholar
  36. Aylward, F., and Rao, C. V. N., 1956a, Use of hydrazine as a reducing agent for unsaturated compounds. I. The hydrogenation of oleic acid, J. Appl. Chem. 6: 248.Google Scholar
  37. Aylward, F., and Rao, C. V. N., 1956b, Use of hydrazine as a reducing agent for unsaturated compounds. II. The hydrogenation of elaidic and ricinoleic Acids, J. Appl. Chem. 6: 559.Google Scholar
  38. Aylward, F., and Rao, C. V. N., 1957a, Use of hydrazine as a reducing agent for unsaturated compounds. III. Hydrogenation of linoleic acid, J. Appl. Chem. 7: 134.Google Scholar
  39. Aylward, F., and Rao, C. V. N., 1957b, Use of hydrazine as a reducing agent for unsaturated compounds. IV. The hydrogenation of elaeostearic acid from tung (china wood) oil, J. Appl. Chem. 7: 137.Google Scholar
  40. Baer, E., Buchnea, D., and Newcombe, A. G., 1956, Synthesis of unsaturated L-a-lecithins. I. L-a-(dioleyl)-lecithin, J. Am. Chem. Soc. 78: 232.Google Scholar
  41. Bailey, G. F., and Horvat, R. J., 1972, Raman spectroscopic analysis of cis/trans isomer composition of edible vegetable oils, J. Am. Oil Chem. Soc. 49: 494.Google Scholar
  42. Baker, N., and Wulson, L., 1974, UV oxidized linolenic acid in high yield for cancer study, Lipids 9: 346.PubMedGoogle Scholar
  43. Baldwin, M. A., and McLafferty, F. W., 1973, The abundances of metastable peaks measured by the major defocusing technique, Int. J. Mass Spectrom. Ion Phys. 12: 86.Google Scholar
  44. Bangham, A. D., and Hill, M. W., 1972, Distillation and storage of water, Nature 237: 408.Google Scholar
  45. Barber, M., and Elliott, R. M., 1964, Comparison of metastable spectra from single-and double-focusing mass spectrometers. Abstracts, 12th Annual Conference on Mass Spectrometry and Allied Topics, A.S.T.M. Committee E-14, Montreal, p. 150.Google Scholar
  46. Barber, M., Merren, T. O., and and Kelly, W., 1964, The mass spectrometry of large molecules. I. The triglycerides of straight chain fatty acids, Tetrahedron Lett. 18: 1063.Google Scholar
  47. Barber, M., Wolstenholme, W. A., and Jennings, K. R., 1967, Metastable ions in a double-focusing mass spectrometer, Nature 214: 664.Google Scholar
  48. Barber, M., Chapman, J. R., and Wolstenholme, W. A., 1968, Lipid analysis by coupled mass spectrometry—gas chromatography (MS-GLC). I. Diglycerides, Int. J. Mass Spectrom. Ion. Phys. 1: 98.Google Scholar
  49. Barker, R. W., Bell, J. D., Radda, G. K., and Richards, R. E., 1972, Phosphorus nuclear magnetic resonance in phospholipid dispersions, Biochim. Biophys. Acta 260: 161.PubMedGoogle Scholar
  50. Barsukov, L. I., Shapiro, Yu. E., Viktorov, A. K., Volkova, V. I., Bystrov, V. F., and Bergelson, L. D. 1975, Intervesicular phospholipid exchange: An NMR study, Chem. Phys. Lipids 14: 211.PubMedGoogle Scholar
  51. Barye, J. A., Gunstone, F. D., Jacobsberg, F. R., and Winlow, P., 1972, Fatty acids. Part 34. Behavior of all the methyl octadecenoates in argentation chromatography and gas—liquid chromatography, Chem. Phys. Lipids 8: 117.Google Scholar
  52. Batchelor, J. G., Prestegard, J. H., Cushley, R. J., and Lipsky, S. R., 1973, Electric field effects in the 13C nuclear magnetic resonance spectra of unsaturated fatty acids. A potential tool for conformational analysis, J. Am. Chem. Soc. 95: 6358.PubMedGoogle Scholar
  53. Batchelor, J. G., Cushley, R. J., and Prestegard, J. H., 1974, Carbon-13 Fourier transform nuclear magnetic resonance. VIII. Role of steric and electric field effects in fatty acid spectra, J. Org. Chem. 39: 1698.PubMedGoogle Scholar
  54. Batt, R. D., Hodges, R., and Robertson, J. G., 1971, Gas chromatography and mass spectrometry of the trimethylsilyl ether methyl ester derivatives of long-chain hydroxy acids from Nocardia corallina, Biochim. Biophys. Acta 239: 368.Google Scholar
  55. Baumann, W. J., Seufert, J., Hayes, H. W., and Holman, R. T., 1969, Mass spectrometric analysis of long-chain esters of diols, J. Lipid. Res. 10: 703.PubMedGoogle Scholar
  56. Baumann, W. J., Aasen, A. J., Kramer, J. K. G., and Holman, R. T., 1973, Evidence for the electron impact induced formation of prominent cyclic acetal ions from aliphatic ester lipids, J. Org. Chem. 38: 3767.Google Scholar
  57. Beckey, H. D., 1971, Field Ionization Mass Spectrometry, Pergamon Press, Oxford, New York, Toronto and Sydney.Google Scholar
  58. Beckey, H. D., Migahed, M. D., and Röllgen, F. W., 1972, Dissociation of multiply charged organic ions in the field ionization mass spectrometer, Int. J. Mass Spectrom. Ion Phys. 10: 471.Google Scholar
  59. Beijer, K., and Nyström, E., 1972, Reversed-phase chromatography of fatty acids on hydrophobic Sephadex, Anal. Biochem. 48: 1.PubMedGoogle Scholar
  60. Beiss, U., 1964, Zur papierchromatographischen Auftrennung von Pflanzenlipiden, J. Chromatog., 13: 104.Google Scholar
  61. Beiss, U., and Armbuster, 0., 1958, Die qualitative Bestimmung von Phosphatiden durch Papierchromatographie, Z. Naturforsch 13B: 79.Google Scholar
  62. Bellamy, L. J., 1958, The Infra-red Spectra of Complex Molecule.), Methuen amp; Co., London, Wiley, New York.Google Scholar
  63. Bengtsson, B., and Bosund, I., 1966, Lipid hydrolysis in unblanched frozen peas (Pisum sativum), J. Food Sci. 31: 474.Google Scholar
  64. Bentley, T. W., 1975, Structure and mechanism in mass spectrometry, in: Mass Spectrometry, Vol 3 (R. A. W. Johnstone, ed.), p. 59, The Chemical Society, London. Bergelson, L. D., 1969, Diol lipids, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 10 (R. T. Holman, ed.), p. 239, Pergamon Press, Oxford.Google Scholar
  65. Bernstein, H. J., Pople, J. A., and Schneider, W. G., 1957, The analysis of nuclear magnetic resonance spectra. 1. Systems of two and three nuclei, Can. J. Chem. 35: 65.Google Scholar
  66. Beynon, J. H., 1960, Mass Spectrometry and its Application to Organic Chemistry, p. 459, Elsevier Publishing Co., Amsterdam.Google Scholar
  67. Beynon, J. H., and Williams, A. E., 1963, Mass and Abundance Tables for Use in Mass Spectrometry, Elsevier Publishing Company, Amsterdam, London, and New York.Google Scholar
  68. Beynon, J. H., Saunders, R. A., and Williams, A. E., 1965, Dissociation of metastable ions in mass spectrometers with release of internal energy, Z. Naturforsch 20a: 180.Google Scholar
  69. Beynon, J. H., Hopkinson, J. A., and Lester, G. R., 1969, Mass spectrometry—the appearance potentials of “metastable peaks” in some aromatic nitrocompounds—a chemical reaction in the mass spectrometer, Int. J. Mass Spectrom Ion. Phys. 2: 291.Google Scholar
  70. Biemann, K., 1962, Mass Spectrometry:Organic Chemical Applications, McGraw-Hill Book Co. Inc., New York.Google Scholar
  71. Biemann, K., and Mc Closkey, J. A., 1962, Mass spectra of organic molecules II Amino acids, J. Am. Chem. Soc. 84: 3192.Google Scholar
  72. Bierl, B. A., and Beroza, M., 1974, Electron-impact mass spectrometry for location of epoxide position in long-chain vic-dialkyl and trialkyl epoxides, J. Am. Oil Chem. Soc. 51: 466.Google Scholar
  73. Binks, R., Goodfellow, R. J., MacMillan, J., and Pryce, R. J., 1970, Acetyl tri-n-butyl citrate, a common laboratory contaminant, Chem. Ind. 1970: 565.Google Scholar
  74. Birdsall, N. J. M., Feeney, J., Lee, A. G., Levine, Y. K., and Metcalfe, J. C., 1972, Dipalmitoyllecithin. Assignment of the 1H and 13C nuclear magnetic resonance spectra and conformational studies, J. Chem. Soc. Perkin II, 1972: 1441.Google Scholar
  75. Bischel, M. D., and Austin, J. H., 1963, A modified benzidine method for the chromatographic detection of sphingolipids and acid polysaccharides, Biochim. Biophys. Acta 70: 598.PubMedGoogle Scholar
  76. Bjerve, K. S., Daae, L. N. W., and Bremer, J., 1974, The selective loss of lysophospholipids in some commonly used lipid-extraction procedures, Anal Biochem. 58: 238.PubMedGoogle Scholar
  77. Björkhem, I., Bloomstrand, R., and Svensson, L., 1974, Serum cholesterol determination by mass fragmentography, Clin. Chim. Acta 54: 185.PubMedGoogle Scholar
  78. Björkman, L. R., Karlsson, K. A., Pascher, I., and Samuelsson, B. E., 1972, The identification of large amounts of cerebroside and cholesterol sulfate in the sea star, Asterias rubens, Biochim. Biophys. Acta 270: 260.Google Scholar
  79. Blank, M. L., and Snyder, F., 1970, Specificities of alkaline and acid phosphatases in the dephosphorylation of phospholipids, Biochemistry 9: 5034.PubMedGoogle Scholar
  80. Bligh, E. G., 1961, Lipid hydrolysis in frozen cod muscle, J. Fisheries Res. Board Can. 18: 143.Google Scholar
  81. Bligh, E. G., and Dyer, W. J., 1959, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol. 37: 911.PubMedGoogle Scholar
  82. Blomquist, G. J., and McCain, D. C., 1975, Incorporation of oxygen-18 into secondary alcohols of grasshopper Melanoplus sanguinipes, Lipids, 10: 303.Google Scholar
  83. Boldingh, J., 1950, Fatty acid analysis by partition chromatography, Rec Tray. Chim. Pays-Bas. 69: 247.Google Scholar
  84. Bonelli, E. J., Story, M. S., and Knight, J. B., 1971, Computerized gas chromatography and quadrupole mass spectrometry, Dynamic Mass Spectrom. 2: 177.Google Scholar
  85. Booth, H., 1969, Applications of [1H] nuclear magnetic resonance spectroscopy to the conformational analysis of cyclic compounds, in: Progress in Nuclear Magnetic Resonance Spectroscopy, Vol 5 ( J. W. Emsley, J. Feeney, and L. H. Sutcliffe, eds), p. 149, Press, Pergamon Oxford.Google Scholar
  86. Bottino, N. R., 1971, The composition of marine-oil triglycerides as determined by silver-ion thin-layer chromatography, J. Lipid Res. 12: 24.PubMedGoogle Scholar
  87. Boudreaux, G. J., Bailey, A. V., and Tripp, V. W., 1972, Induced chemical shifts in the NMR spectrum of methyl petroselinate, J. Am. Oil Chem. Soc. 49: 200.Google Scholar
  88. Breimer, M. E., Karlsson, K. A., and Samuelsson, B. E., 1975, Presence of phytosphingosine combined with 2-hydroxy fatty acids in sphingomyelins of bovine kidney and intestinal mucosa, Lipids 10: 17.PubMedGoogle Scholar
  89. Brian, G. L., Gracy, R. W., and Scholes, V. E., 1972, Gas chromatography of cyclopropane fatty acid methylesters prepared with methanolic boron trichloride and boron trifluoride, J. Chromatog. 66: 138.Google Scholar
  90. Brockerhoff, H., 1963, Breakdown of phospholipids in mild alkaline hydrolysis, J. Lipid Res. 4: 96.PubMedGoogle Scholar
  91. Brockerhoff, H., 1971, Stereospecific analysis of triglycerides, Lipids 6: 942.PubMedGoogle Scholar
  92. Brockerhoff, H., 1975, Determination of the positional distribution of fatty acids in glycerolipids, in: Methods in Enzymology, Vol XXXV, Part B (J. M. Lowenstein, ed.), p. 315, Academic Press, New York.Google Scholar
  93. Brooks, C. J. W., 1971, Gas chromatography—mass spectrometry, in: Mass Spectrometry, Vol. 1 ( D. H. Williams, ed.), p. 288, The Chemical Society, London.Google Scholar
  94. Brooks, C. J. W., and Middleditch, B. S., 1973 a, Gas chromatography—mass spectrometry, in: Mass Spectrometry, Vol 2 (D. H. Williams, ed.), p. 302, The Chemical Society, London.Google Scholar
  95. Brooks, C. J. W., and Middleditch, B. S., 1973b, Some aspects of mass spectrometry in steroid analysis, in: Modern Methods of Steroid Analysis ( E. Heftmann, ed.), p. 139, Academic Press, New York.Google Scholar
  96. Brooks, C. J. W., and Middletitch, B. S., 1975, Gas chromatography—mass spectrometry, in: Mass Spectrometry Vol. 3 ( R. A. W. Johnstone, ed.), p. 296, The Chemical Society, London.Google Scholar
  97. Brooks, C. J. W., Henderson, W., and Steel, G., 1973, The use of trimethylsilyl ethers in characterization of natural sterols and steroid diols by gas chromatography—mass spectrometry, Biochim. Biophys. Acta 296: 431.PubMedGoogle Scholar
  98. Brown, P., 1970, Kinetic studies in mass spectrometry. VII. Competing cleavage and rearrangement processes in molecular ion decomposition reactions, Org. Mass Spectrom. 3: 1175.Google Scholar
  99. Brown, J. B., and Kolb, D. K., 1955, Applications of low temperature crystallization in the separation of the fatty acids and their compounds, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 3 ( R. T. Holman, W. O. Lundberg, and T. Malkin, eds.), p. 57, Pergamon Press, London.Google Scholar
  100. Budzikiewicz, H., 1972, Steroids, in: Biochemical Applications of Mass Spectrometry, ( G. R. Waller, ed.), p. 251, Wiley Interscience, New York.Google Scholar
  101. Budzikiewicz, H., Djerassi, C., and Williams, D. H., 1964, Structural Elucidation of Natural Products by Mass Spectrometry, Vols. 1 and 2, Holden—Day Inc., San Francisco. Budzikiewicz, H., Djerassi, C., and Williams, D. H., 1967, Mass Spectrometry of Organic Compounds, Holden—Day Inc., San Francisco.Google Scholar
  102. Budzikiewicz, H., Rullkötter, J., and Heinz, E., 1973, Massenspektroskopische Untersuchungen an Glycosylglyceriden, Z. Naturforsch. 28C: 499.Google Scholar
  103. Bulgozdy, E. L., and Wagner, E. L., 1951, The Preparation of anhydrous hydrazine and deutero-hydrazine from hydrazine dihydrochloride, J. Am. Chem. Soc. 73: 5866.Google Scholar
  104. Bu’Lock, J. D., and Smith, G. N., 1967, The origin of naturally occurring acetylenes, J. Chem. Soc. 1967C: 332.Google Scholar
  105. Burchfield, H. P., and Storrs, E. E., 1962, Biochemical Applications of Gas Chromatography, Academic Press, New York.Google Scholar
  106. Burlingame, A. L., 1970, Topics in Organic Mass Spectrometry, Wiley, New York. Burlingame, A. L., and Johnson, G. A., 1972, Mass spectrometry, Anal. Chem. 44: 337R.Google Scholar
  107. Burlingame, A. L., Cox, R. E., and Derrick, P. J., 1974, Mass spectrometry, Anal. Chem. 46: 248R.Google Scholar
  108. Bus, J. and Frost, D. J., 1974, 12CMR analysis of methyl octadecenoates, Rec. Tray. Chim. 93: 213.Google Scholar
  109. Bus, J. and Frost, D. J., 1975, Determination of the positions of double bonds in unsaturated fatty acids by carbon-13 and proton NMR spectrometry, Proc. ISF Congress, MilanGoogle Scholar
  110. Bystrov, V. F., Dubrovina, N. I., Barsukov, L. I., and Bergelson, L. D., 1971, NMR differentiation of the internal and external phospholipid membrane surface using paramagnetic Mn2+ and Eu3+ ions, Chem. Phys. Lipids 6: 343.Google Scholar
  111. Campbell, I. M., and Naworal, J., 1969a, Mass spectral discrimination between monoenoic and cyclopropanoid and between normals, iso-and anteiso fatty acid methyl esters, J. Lipid Res. 10: 589.PubMedGoogle Scholar
  112. Campbell, I. M., and Naworal, J., 1969b, Composition of the saturated and monounsaturated fatty acids of Mycobacterium phlei, J. Lipid Res. 10: 593.Google Scholar
  113. Capella, P., and Zorzut, C. M., 1968, Determination of double bond position in monounsaturated fatty acid esters by mass spectrometry of their trimethylsilyloxy derivatives, Anal. Chem. Field, F. H., 1972: 1458.Google Scholar
  114. Carroll, K. K., 1969, Quantitative estimation of peak areas in gas—liquid chromatography, Nature (Lond.) Field, F. H., 1972: 377.Google Scholar
  115. Carroll, K. K., and Serdarevich, B., 1967, Column chromatography of neutral glycerides and fatty acids, in: Lipid Choromatographic analysis Vol. 1 ( G. V. Marinetti, ed.), p. 205, Marcel Dekker, New York.Google Scholar
  116. Carter, H. E., and Weber, E. J., 1966, Preparation and properties of various salt forms of plant phosphatidyl inositols, Lipids Field, F. H., 1972: 16.Google Scholar
  117. Cason, J., and Lange, G. L., 1964, Nuclear magnetic resonance determination of substituent methyls in fatty acids, J. Org . Chem. 29: 2107.Google Scholar
  118. Casy, A. F., 1971, PMR Spectroscopy in Medicinal and Biological Chemistry, Academic Press, New York.Google Scholar
  119. Chait, E. M., 1972, Ionization sources in mass spectrometry, Anal. Chem. 44: 77A.Google Scholar
  120. Chang, S. P., Ridgway, R. W., and Riser, G. R., 1975, Oligomeric plasticizers from crambe-oil derived dicarboxylic acids for poly (vinylchloride), J. Am. Oil Chem. Soc. 52: 10.Google Scholar
  121. Chapman, D., 1963, The high resolution proton resonance spectra of glycerides, J. Chem. Soc. 1963: 131.Google Scholar
  122. Chapman, D., 1965, The Structure of Lipids by Spectroscopic and X-ray Techniques, Methuen amp; Co., London.Google Scholar
  123. Chasin, D. G., and Perkins, E. G., 1971a, The mass spectra of alkyl 2-diethyl-phosphonoalkanoates, Chem. Phys. Lipids 6: 311.Google Scholar
  124. Chasin, D. G., and Perkins, E. G., 1971b, Synthesis and mass spectra of esters of branched-chain fatty acids, Chem. Phys. Lipids 6: 8.Google Scholar
  125. Chemical Society, 1971, Mass Spectrometry, Vol 1 ( D. H. Williams, ed. ).Google Scholar
  126. Chemical Society, 1973, Mass Spectrometry, Vol. 2 ( D. H. Williams, ed. ).Google Scholar
  127. Chemical Society, 1975, Mass Spectrometry, Vol. 3 ( R. A. W. Johnstone, ed. ).Google Scholar
  128. Chemical Society, 1972, 1973, 1974, Nuclear Magnetic Resonance Vol. 1, 2, 3 ( R. K. Harris, ed. ).Google Scholar
  129. Chipault, J. R., 1962, High energy irradiation, in: Lipids and their Oxidation, ( Schultz, H. W., Day, E. A., and Sinnhuber, R. O., eds.), pp. 151–169, Avi Publ. Co., Conn., U.S.A.Google Scholar
  130. Christie, W. W., 1969, The glyceride structure of Sapium sebiferum seed oil, Biochem. Biophys. Acta 187: 1.PubMedGoogle Scholar
  131. Christie, W. W., 1970, Cyclopropane and cyclopropene fatty acids, in: Topics in Lipid Chemistry, Vol. 1 ( F. D. Gunstone, ed.), p. 1, Logos Press, London.Google Scholar
  132. Christie, W. W., 1973, Lipid Analysis, Pergamon Press, Oxford.Google Scholar
  133. Christie, W. W., and Holman, R. T., 1966, Mass spectrometry of lipids. I. Cyclopropane fatty acid esters, Lipids 1: 176.PubMedGoogle Scholar
  134. Christie, W. W., Gunstone, F. D., Prentice, H. G., and Sen Gupta, S. C., 1964, Shellac. Part II. Some minor aliphatic constituents, J. Chem. Soc. 1964 (5): 5833.Google Scholar
  135. Christopherson, S. W., and Glass, R. L., 1969, Preparation of milk fat methyl esters by alcoholysis in an essentially nonalcoholic solution, J. Dairy Sci. 52: 1289.Google Scholar
  136. Chupka, W. A., 1959, Effect of unimolecular decay kinetics on the interpretation of appearance potentials, J. Chem. Phys. 30: 191.Google Scholar
  137. Cicero, T. J., and Sherman, W. R., 1971a, Combined gas chromatography-mass spec- trometry of brain polyphosphoinositide, Biochem. Biophys. Res. Comm. 42: 428.PubMedGoogle Scholar
  138. Cicero, T. J., and Sherman, W. R., 1971b, Combined gas chromatography-mass spectrometry of trimethyl silyl deacylated cardiolipin from rat brain, Biochem. Biophys. Res. Commun. 43: 451.PubMedGoogle Scholar
  139. Conway, B. E., Angerstein-Kozlowska, H., Sjarp, W. B. A., and Criddle, E. E., 1973, Ultrapurification of water for electrochemical and surface chemical work by catalytic pyrodistillation, Anal. Chem. 45: 1331.Google Scholar
  140. Cooks, R. G., 1969, Bond formation upon electron impact, Org. Mass Spectrom. 2: 481.Google Scholar
  141. Cooks, R. G., and Johnson, G. S., 1971, Natural products; including oligopeptides, oligonucleotides and oligosaccharides, in: Mass Spectrometry Vol 1 ( D. H. Williams, ed.), p. 139, The Chemical Society, London.Google Scholar
  142. Cooks, R. G., Howe, I., and Williams, D. H., 1969, Structure and fragmentation mechanisms of organic ions in the mass spectrometer, Org. Mass Spectrom. 2: 137.Google Scholar
  143. Cooks, R. G., Beyon, J. H., Caprioli, R. M., and Lester, G. R., 1973, Metastable Ions, Elsevier Publishing Co., Amsterdam, London, and New York.Google Scholar
  144. Cooper, G. F., and Fried, J., 1973, Carbon-13 Nuclear magnetic resonance spectra of prostaglandins and some prostaglandin analogues, Proc. Nat. Acad. Sci. U.S.A. 70: 1579.Google Scholar
  145. Corio, P. L., Smith, S. L., and Wasson, J. R., 1972, Nuclear magnetic resonance spectrometry, Anal. Chem. 44: 407R.Google Scholar
  146. Cornell, B. A., Pope, J. M., and Troup, G. J. F., 1974, A pulsed NMR study of D2O bound to 1,2-dipalmitoyl phosphatidylcholine, Chem. Phys. Lipids 13: 183.PubMedGoogle Scholar
  147. Craig, L. C., and Craig, D., 1950, Extraction and distribution, in: Technique of Organic Google Scholar
  148. Chemistry l. 3, 1st edition (A. Weissberger, ed.), p. 171, Interscience Publishers Inc., New York.Google Scholar
  149. Craig, L. C., and Craig, D., 1956, Laboratory extraction and countercurrent distribution, in: Technique of Organic Chemistry, Vol. 3, 2nd edition ( A. Weissberger, ed.), p. 149, Interscience Publishers Inc., New York.Google Scholar
  150. Crain, P. F., Desiderio, D. M., and McCloskey, J. A., 1975, Mass spectrometry of prostaglandins, in: Methods in Enzymology Vol. XXXV, Part B ( J. M. Lowenstein, ed.), p. 359, Academic Press, New York.Google Scholar
  151. Crawford, R. V., and Hilditch, T. P., 1950, The component fatty acids of tobacco-seed oils, J. Sci. Fd. Agric. 1: 230.Google Scholar
  152. Critchley, C., and Heinz, E., 1973, Characterization and enzymatic synthesis of acyl galactosyl monoglyceride, Biochim. Biophys. Acta 326: 184.PubMedGoogle Scholar
  153. Crocken, B. J. and Nyc, J. F., 1964, Phospholipid variations in mutant strains of Neuro-spora crassa, J. Biol. Chem. 239: 1727.Google Scholar
  154. Curstedt, T., 1974, Mass spectra of trimethylsilyl ethers of [2H]-labeled monoglycerides and diglycerides, Biochim. Biophys. Acta 360: 12.PubMedGoogle Scholar
  155. Curstedt, T., and Sjövall, J., Analysis of molecular species of [2H]-labelled phosphatidylcholines by liquid-gel chromatography and gas chromatography—mass spectrometry, Biochim. Biophys. Acta 360: 24.Google Scholar
  156. Dahle, L. K., Hill. E. G., and Holman, R. T., 1962, The thiobarbituric acid reaction and the autoxidations of polyunsaturated fatty acid methyl esters, Archiv. Biochem. Biophys. 98: 253.Google Scholar
  157. Daly, N. R., McCormick, A., Powell, R. E., and Hayes, R., 1973, A new type of ion detector having special advantages for the study of metastable transitions of organic ions produced by electron impact, Int. J. Mass Spectrom. Ion Phys. 11: 255.Google Scholar
  158. Darke, A., Finer, E. G., Flook, A. G., and Phillips, M. C., 1972, Nuclear magnetic reso- nance study of lecithin—cholesterol interactions, J. Mol. Biol. 63: 265.PubMedGoogle Scholar
  159. Dawidowicz, E. A., and Thompson, T. E., 1971, Artifacts produced by boron trifluoride methanolysis of a synthetic lecithin containing cyclo-propane fatty acids, J. Lipid Res. 12: 636.PubMedGoogle Scholar
  160. Dawson, R. M. C., 1967, Analysis of phosphatides and glycolipids by chromatography of their partial hydrolysis products, in: Lipid Chromatographic Analysis Vol 1 ( G. V. Marinetti, ed), p. 163, Marcel Dekker, New York.Google Scholar
  161. Dawson, R. M. C., 1973, Specificity of enzymes involved in the metabolism of phospholipids, in: Form and Function of Phospholipids ( G. B. Ansell, R. M. C. Dawson and J. N. Hawthorne, eds.), p. 97, Elsevier, London.Google Scholar
  162. Dawson, R. M. C., and Eichberg, J., 1965, Disphosphoinositide and triphosphoinositide in animal tissues. Extraction, estimation and changes post mortem, Biochem. J. 96: 634.Google Scholar
  163. Dawson, R. M. C., and Kemp, P., 1967, The aminoethylphosphonate-containing lipids of rumen protozoa, Biochem. J. 105: 837.PubMedGoogle Scholar
  164. Dawson, G., and Sweeley, C. C., 1971, Mass spectrometry of neutral mono-and disialoglycosphingolipids, J. Lipid Res. 12: 56.PubMedGoogle Scholar
  165. Dawson, R. M. C., Mann, T., and White, I. G., 1957, Glycerylphosphorylcholine and phosphorylcholine in semen, and their relation to choline, Biochem. J. 65: 627.PubMedGoogle Scholar
  166. Dawson, R. M. C., Hemington, N., and Davenport, J. B., 1962, Improvements in the method of determining individual phospholipids in a complex mixture by successive chemical hydrolyses, Biochem. J. 84: 497.PubMedGoogle Scholar
  167. Dawson, R. M. C., Clarke, N., and Quarles, R. H., 1969, N-Acylphosphatidylethanolamine, a phospholipid that is rapidly metabolized during the early germination of pea seeds, Biochem. J. 114: 265.PubMedGoogle Scholar
  168. Dehmlow, E. V., 1974, Phase-transfer catalyzed two-phase reactions in preparative organic chemistry, Angew. Chem. Internat Edit. 13: 170.Google Scholar
  169. Demarco, P. V., Elzey, T. K., Burton Lewis, R., and Wenkert, E., 1970a, Paramagnetic induced shifts in the proton magnetic resonance spectra of alcohols using tris(dipivalomethanato)europium (III), J. Am. Chem. Soc. 92: 5734.Google Scholar
  170. Demarco, P. V., Elzey, T. K., Burton Lewis, R., and Wenkert, E., 1970b, Tris(dipivalomethanato)europium (III). A shift reagent for use in the proton magnetic resonance analysis of steroids and terpenoids, J. Am. Chem. Soc. 92: 5737.Google Scholar
  171. Derrick, P. J., and Robertson, A. J. B., 1972, Field ionization mass spectrometry with conditioned razor blades, Int. J. Mass Spectrom. Ion Phys. 10: 315.Google Scholar
  172. Desiderio, D. M., and Hagele, K., 1971, Chemical Ionization Mass Spectrometry of Prostaglandins, J. Chem. Soc. D. Chem. Commun. 1971: 1074.Google Scholar
  173. Dias, J. S., and Djerassi, C., 1973, Mass spectrometry in structural and stereochemical problems CCXXIV. Fragmentation of cyclopropanes, Org. Mass Spectrom. 7: 753.Google Scholar
  174. Dijkstra, A., 1969, Quantitative estimation of peak areas in gas—liquid chromatography, Nature (Lond.) 192: 965.Google Scholar
  175. Dils, R. R. A., 1958, The fractionation of animal phospholipids, Thesis. University of Birmingham.Google Scholar
  176. Dinh-Nguyen, Ng., and Ryhage, R., 1959, Mass spectrometric demonstration of extensive replacement of hydrogen by deuterium during catalytic deuteration of methyl oleate, methyl 9,10-dibromostearate and methyl 12,chlorostearate, Acta Chem. Scand. 13: 1032.Google Scholar
  177. Dinh-Nguyen, Ng., Ryhage, R., and Ställberg-Stenhagen, S., 1960, Determination de la position des doubles liaisons carbone-carbone par spectrometrie de masse. I. Double liaison dans les esters methyliqués des acides cis-petroselinique, oleique et elaidique, Ark. Kemi. 15: 433.Google Scholar
  178. Dinh-Nguyen, Ng., Ryhage, R., Ställberg-Stenhagen, S., and Stenhagen, E., 1961, Mass spectrometric studies. VIII. A study of the fragmentation of normal long-chain methyl esters and hydrocarbons under electron impact with the aid of deuterium-substituted compounds, Ark. Kemi. 18: 393.Google Scholar
  179. Dittmer, J. C., and Dawson, R. M. C., 1961, The isolation of a new lipid, triphosphoinositide, and monophosphoinositide from ox brain, Biochem J. 81: 535.PubMedGoogle Scholar
  180. Dittmer, J. C., and Lester, R. L., 1964, A simple specific spray for the detection of phospholipids on thin-layer chromatograms, J. Lipid Res. 5: 126.Google Scholar
  181. Dittmer, J. C., and Wells, M. A., 1969, Quantitative and qualitative analysis of lipids and lipid components, in: Methods in Enzymology, Vol. XIV (J. M., Lowenstein, ed.), p. 482, Academic Press, New York and London.Google Scholar
  182. Djerassi, C., and Fenselau, C., 1965, Mass spectrometry in structural and stereochemical problems. LXXXVI. The hydrogen-transfer reactions in butyl propionate, benzoate and phthalate, J. Amer. Chem. Soc. 87: 5756.Google Scholar
  183. Dockx, J., 1973, Quaternary ammonium compounds in organic synthesis, Synthesis 1973: 441.Google Scholar
  184. Doering, W. von E., and Henderson, W. A., 1958, The electron-seeking demands of dichlorocarbene in its addition to olefins, J. Am. Chem. Soc. 80: 5274.Google Scholar
  185. Doering, W. von E., and Hoffmann, A. K., 1954, The addition of dichlorocarbene to olefins, J. Am. Chem. Soc. 76: 6162.Google Scholar
  186. Dorman, D. E., Jautelat, M., and Roberts, J. D., 1971, Carbon-13 nuclear magnetic resonance spectroscopy. Quantitative correlations of the carbon chemical shifts of acyclic alkenes, J. Org . Chem. 36: 2757.Google Scholar
  187. Downing, D. T., and Greene, M. S., 1968, Rapid determination of double-bond positions in monoenoic fatty acids by periodate-permanganate oxidation, Lipids, 3: 96.PubMedGoogle Scholar
  188. Dufourcq, J., and Lussan, C., 1972, Conformations of phosphatidylcholine and phosphatidylethanolamine polar groups determined by NMR spectroscopy, FEBS Lett. 26: 35.PubMedGoogle Scholar
  189. Duncan, J. H., Lennarz, W. J., and Fenselau, C. C., 1971, Mass spectral analysis of glycerophospholipids, Biochemistry 10: 927.PubMedGoogle Scholar
  190. Dutton, H. J., 1954, Countercurrent fractionation of lipids, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 2 ( R. T. Holman, W. O. Lundberg, and T. Malkin, eds.), p. 292, Pergamon Press, London.Google Scholar
  191. Dwek, R. A., 1973, Nuclear Magnetic Resonance (N.M.R.) in Biochemistry, Clarendon Press, Oxford.Google Scholar
  192. Egge, H., Murawski, U., Chatranon, W., and Zilliken, F., 1971, The branched chain fatty acids of Staphylococcus aureus, a gas chromatographic-mass spectrometric analysis, Z. Naturforsch 26b: 893.Google Scholar
  193. Eglinton, G., Hunneman, D. H., and McCormick, A., 1968, Gas chromatography—mass spectrometric studies of long chain hydroxy acids. III. The mass spectra of the methyl esters trimethylsilylethers of aliphatic hydroxy acids. A facile method of double bond location. Org . Mass Spectrom. 1: 593.Google Scholar
  194. Eglinton, G., Simonteit, B. R. T., and Zoro, J. A., 1975, The recognition of organic pollutants in aquatic sediments, Proc. Roy. Soc. Lond. B. 189: 415.Google Scholar
  195. Einolf, W. N., and Fenselau, C., 1974, Phospholipids in pulmonary alveolar proteinosis, Biomed. Mass Spectrom. 1: 195.PubMedGoogle Scholar
  196. Eisele, T. A., Libbey, L. M., Pawlowski, N. E., Nixon, J. E., and Sinnhuber, R. 0., 1974, Mass spectrometry of the silver nitrate derivatives of cyclopropenoid compounds, Chem. Phys. Lipids 12: 316.PubMedGoogle Scholar
  197. Eletr, S., and Keith, A. D., 1972, Spin-label studies of dynamics of lipid alkyl chains in biological membranes: role of unsaturated sites, Proc. Nat. Acad. Sci. U.S.A. 69: 1353.Google Scholar
  198. Ellingboe, J., Nyström, E., and Sjövall, J., 1969, Chromatography on lipophilic Sephadex, in: Methods in Enzymology (J. M. Lowenstein, ed.), Academic Press, New York. Emken, E. A., 1971, Determination of cis and trans in monoene and diene fatty esters by gas chromatography, Lipids 6: 686.Google Scholar
  199. Emken, E. A., 1972, Cis and trans analysis of fatty esters by gas chromatography: octadecenoate and octadecadienoate isomers, Lipids 7: 459.Google Scholar
  200. Emken, E. A., and Dutton, H. J., 1974, Sequential gas chromatographic procedure for microanalysis of monoenoic double bond position in hydrogenated oils, Lipids 9:272. E.ken, E. A., Schofield, C. R., and Dutton, H. J., 1964, Chromatographic separation of cis and trans fatty esters by argentation with a macroreticular exchange resin, J. Am. Oil Chem. Soc. 41: 388.Google Scholar
  201. Emsley, J. W., Feeney, J., and Sutcliffe, L. H., 1965, High Resolution Nuclear Magnetic Resonance Vols. I and I I, Pergamon Press, Oxford.Google Scholar
  202. Engel, R., Halpern, D., and Funk, B. A., 1973, Multiply charged ions in the mass spectra of aromatics, Org. Mass Spectrom. 7: 177.Google Scholar
  203. Entressangles, B., Sari, H., Desnuelle, P., 1966, On the positional specificity of pancreatic lipase, Biochim. Biophys. Acta 125: 597.PubMedGoogle Scholar
  204. Esders, T. W., and Light, R. J., 1972, Characterization and in vivo production of three glycolipids from Candida bugoriensis 13-glucopyranosylglucopyranosyloxydocosanoic acid and its mono and diacetylated derivatives, J. Lipid. Res. 13: 663.PubMedGoogle Scholar
  205. Ettre, L. S., Open Tubular Columns Plenum Press, New York.Google Scholar
  206. Ettre, L. S., Purcell, J. E., and Norem, S. D., 1965, Support coated open tubular columns, J. Gas Chrom. 3: 181.Google Scholar
  207. Evans, D. F., and Wyatt, M., 1972, Direct observation of free and complexed substrate in a lanthanide shift reagent system. Chem. Comm. 1972: 312.Google Scholar
  208. Evans, N., Games, D. E., Harwood, J. L., and Jackson, A. H., 1974, Field desorptionGoogle Scholar
  209. mass spectrometry of triglycerides and phosphoglycerides, Biochem. Soc. Trans. 2:1091.Google Scholar
  210. Fales, H. M., 1966, The mass spectrum of a compound of formula C72H24O8F128N4P4 and molecular weight. 3628, Anal. Chem. 38: 1058.Google Scholar
  211. Fales, H. M., 1971, Newer ionization techniques, in: Mass Spectrometry—Techniques and Applications ( G. W. A. Milne, Ed.), p. 179, Wiley Interscience, New York.Google Scholar
  212. Fan, G. M., and Marinetti, G. V., 1969, Chromatography of lipids on silica gel-loaded filter paper, in: Methods in Enzymology, Vol. XIV ( Lowenstein, J. M. Ed.), p. 598, Academic Press, New York.Google Scholar
  213. Farmer, E. H., and Sutton, D. A., 1943a, The course of autoxidation reactions in polyisoprenes and allied compounds. Part IV. The isolation and constitution of photochemically-formed methyl oleate peroxide, J. Chem. Soc. 1943: 119.Google Scholar
  214. Farmer, E. H., and Sutton, D. A., 1943b, The course of autoxidation reactions in polyisoprenes and allied compounds. Part V. Observations on fish-oil acids, J. Chem. Soc. 1943: 122.Google Scholar
  215. Field, F. H., 1972, Chemical ionization mass spectrometry, in: MTP International Review of Science, Vol. 5 ( A. Maccoll, ed.), pp. 133–181, Butterworths, London.Google Scholar
  216. Field, F. H., and Munson, M. S. B., 1965, Reactions of gaseous ions. XIV. Mass spectrometric studies of methane at pressures to 2 torr, J. Amer. Chem. Soc. 87: 3289.Google Scholar
  217. Fields, E. K., 1962, Insertion of dichlorocarbene into aromatic hydrocarbons, J. Amer. Chem. Soc. 84: 1744.Google Scholar
  218. Finar, I. L., 1967, Organic Chemistry, 4th ed., Longmans, Green amp; Co. Ltd., London. Finer, E. G., and Darke, A., 1974, Phospholipid hydration studied by deuteron magnetic resonance spectroscopy, Chem. Phys. Lipids 12: 1.Google Scholar
  219. Finney, C. D., Sung, J. P., and Finney, K. A., 1974, On the selection of nominal ionization efficiency threshold laws for onset potential determinations, Int. J. Mass Spectrom. Ion Phys. 13: 459.Google Scholar
  220. Flesch, G. D., and Svec, H. J., 1971a, Deconvolution of ionization efficiency data as a means of determining fragmentation mechanisms in the mass spectrometer, J. Chem. Phys. 55: 2681.Google Scholar
  221. Flesch, G. D., and Svec, H. J., 1971b, Fragmentation mechanisms for metal hexacarbonyls by deconvolution-convolution of ionization efficiency data, J. Chem. Phys. 55: 4310.Google Scholar
  222. Flesch, G. D., White, R. M., and Svec, H. J., 1969, The positive and negative ion spectra of chromyl chloride and chromyl fluoride, Int. J. Mass Spectrom. Ion Phys. 3: 339.Google Scholar
  223. Folch, J., J., 1949, Complete fractionation of brain cephalin: isolation from it of phosphatidyl serine, phosphatidyl ethanolamine, and diphosphoinositide, J. Biol. Chem. 177: 497.PubMedGoogle Scholar
  224. Folch, J., Lees, M., and Sloane-Stanley, G. H., 1957, A simple method for the isolation and purification of total lipides from animal tissues, J. Biol. Chem. 226: 497.PubMedGoogle Scholar
  225. Francis, G. W., 1972, Factors affecting the intensity ratio of M-92/M-106 ions in mass spectra of carotenoids, Acta Chem. Scand. 26: 1443.Google Scholar
  226. Franklin, J. L., Dillard, J. G., Rosenstock, H. M., Herron, J. T., Draxl, K., and Field, F. H., 1969, Ionization potentials, appearance potentials and heats of formation of gaseous positive ions National Bureau of Standards (U.S. Department of Commerce) NSRDS-NBS26.Google Scholar
  227. Fraser, R. R., Petit, M. A., and Miskow, M., 1972, Separation of nuclear magnetic resonance signals of internally enantiotropic protons using a chiral shift reagent. The deuterium isotope effect on geminal proton–proton coupling constants. J. Am. Chem. Soc. 94: 3253.Google Scholar
  228. Frost, D. J., and Barzilay, J., 1971a, Proton magnetic resonance identification of non-conjugated cis-unsaturated fatty acids and esters, Anal. Chem. 43: 1316.Google Scholar
  229. Frost, D. J., and Barzilay, J., 1971b, PMR cis/trans analysis of double bonds using alkyl substituent effects, Rec. Tray. Chim. Pays. Bas 90: 705.Google Scholar
  230. Frost, D. J., and Sies, I., 1974, PMR analysis of alkenoic esters using shift reagents, Chem. Phys. Lipids 13: 173.PubMedGoogle Scholar
  231. Frost, D. J., Bus, J., Keuning, R., and Sies, I., 1975, PMR analysis of unsaturated tri-glycerides using shift reagents, Chem. Phys. Lipids 14: 189.PubMedGoogle Scholar
  232. Fulk, W. K., and Shorb, M. S., 1970, Production of an artifact during methanolysis of lipids by boron trifluoride-methanol, J. Lipid Res. 11: 276.PubMedGoogle Scholar
  233. Galanos, D. S., and Kapoulas, V. M., 1962, Isolation of polar lipids from triglyceride mixtures, J. Lipid Res. 3: 134.Google Scholar
  234. Galliard, T., Phillips, D. R., and Frost, D. J., 1973, Novel divinyl ether fatty acids in extracts of Solanum tuberosum, Chem. Phys. Lipids 11: 173.Google Scholar
  235. Games, D. E., 1975, Natural products, in: Mass Spectrometry, Vol, 3 ( R. A. W. Johnstone, ed.), pp. 224–261, The Chemical Society, London.Google Scholar
  236. Gaver, R. C., and Sweeley, C. C., 1965, Methods for methanolysis of sphingolipids and direct determination of long-chain bases by gas chromatography, J. Am. Oil Chem. Soc. 42: 294.PubMedGoogle Scholar
  237. Giessner, B. G., and Meisels, G. G., 1970, On the threshold law for ionization by electrons, Int. J. Mass Spectrom. Ion Phys. 4: 84.Google Scholar
  238. Gilbert, M. T., Gilbert, J. D., and Brooks, C. J. W., 1974, Gas phase analytical resolution of enantiomeric amines as diasteroisomeric amides. Gas chromatography—mass spectrometry of a-phenylbutyramides, a-phenylpropionamides and a-chlorophenylacetamides, Biomed. Mass Spectrom. 1: 274.PubMedGoogle Scholar
  239. Goering, H. L., Eikenberry, J. N., and Koermer, G. S., 1971, Tris (3-(trifluoromethylhydroxymethylene)-D-camphorato)europium(III). A chiral shift reagent for direct determination of enantiomeric compositions. J. Am. Chem. Soc. 93: 5913.Google Scholar
  240. Goerke, A., De Gier, J. J., and Bonsen, P. P. M., 1971, Silica gel stimulates the hydrolysis of lecithin by phospholipase A. Biochim. Biophys. Acta 248: 245.PubMedGoogle Scholar
  241. Gohlke, R. S., Happ, G. P., Maier, D. P., and Stewart, D. W., 1972, Exact mass measurement accuracy from CEC 21–110B mass spectrometer and commercial data system DS-30, Anal. Chem. 44: 1484.Google Scholar
  242. Gordon, A. J., and Ford, R. A., 1972, The Chemist’s Companion, Wiley, New York amp; London.Google Scholar
  243. Grant, D. M., and Paul, E. G., 1964, Carbon-13 magnetic resonance. II. Chemical shift data for alkanes, J. Am. Chem. Soc. 86: 2984.Google Scholar
  244. Gray, G. M., 1967, Gas chromatography of long-chain aldehydes, in: Lipid Chromato- graphic Analysis, Vol. I ( G. V. Marinetti, ed.), p. 401, Marcel Dekker, New York.Google Scholar
  245. Green, T., Howitt, F. O., and Preston, R., 1955, The use of polyethylene in the separation of fatty acids by reverse-phase chromatography, Chem. Ind. 1955: 591.Google Scholar
  246. Groff, T. M., Raykoff, H., and Holman, R. T., 1968, Mass spectrometry of lipids. Isomeric methyl nonynoates and the corresponding nonenoates and dideuterononenoates, Arkiv. Kemi. 29: 179.Google Scholar
  247. Guess, W. L., and Haberman, S., 1968, Toxicity profiles of vinyl and polyolefinic plastics and their additives, J. Biomed. Mater. Res. 2: 313.PubMedGoogle Scholar
  248. Guide to Collection of Mass Spectral Data 1974, American Society for Mass Spectrometry, Committee VI, Biological Applications.Google Scholar
  249. Gunstone, F. D., 1958, An Introduction to the Chemistry of Fats and Fatty Acids, pp. 114115, Wiley, New York.Google Scholar
  250. Gunstone, F. D., 1967, An Introduction to the Chemistry and Biochemistry of Fatty Acids and Their Glycerides, 2d ed. Chapman amp; Hall, London.Google Scholar
  251. Gunstone, F. D., and Jacobsberg, F. R., 1972, Fatty acids Part 36. The synthesis, silver ion chromatographic, and NMR spectroscopic properties of the nine 9,12-diunsaturated n-C18 acids, Chem. Phys. Lipids 9: 112.Google Scholar
  252. Gunstone, F. D., and Padley, F. B., 1965, Glyceride studies. Part. III. The component glycerides of five seed oils containing linolenic acid, J. Am. Oil Chem. Soc. 42: 957.PubMedGoogle Scholar
  253. Gunstone, F. D., and Perera, B. S., 1973, The synthesis and chromatographic and spectroscopic properties of the disubstituted cyclopropanes derived from all the methyl trans-octadecenoates. Chem. Phys. Lipids 10: 303.PubMedGoogle Scholar
  254. Gunstone, F. D., Ismail, I. A., and Lie Ken Jie, 1967, Fatty acids. Part 16. Thin layer and gas-liquid chromatographic properties of the cis and trans methyl octadecenoates and of some acetylenic esters, Chem. Phys. Lipids 1:376Google Scholar
  255. Gunstone, F. D., Lie Ken Jie, M., and Wall, R. T., 1971, The synthesis and chromatographic and spectroscopic properties of some methyl cis, cis-dimethylene-octadecanoates, Chem. Phys. Lipids 6: 147.Google Scholar
  256. de Haas, G. H., and van Deenen, L. L. M., 1961, The mode of action of phospholipase A on synthetic “mixed-acid” L-a-phosphatidylethanolamines, Biochim. Biophys. Acta 48: 215.PubMedGoogle Scholar
  257. de Haas, G. H., Mulder, I., and van Deenen, L. L. M., 1960, On the specificity of phospholipase A, Biochem. Biophys. Res. Commun. 3: 287.PubMedGoogle Scholar
  258. Hagen, R., and Roberts, J. D., 1969, Nuclear magnetic resonance spectroscopy. 13C Spectra of aliphatic carboxylic acids and carboxylate anions, J. Am. Chem. Soc. 91: 4504.Google Scholar
  259. Haighton, A. J., Vermaas, L. F., and den Hollander, C., 1971. Determination of the solid-liquid ratio of fats by wide-line nuclear magnetic resonance, J. Am. Oil Chem. Soc. 48: 7.Google Scholar
  260. Haighton, A. J., van Putte, K., and Vermaas, L. F., 1972, Determination of the solid contents of fats by wide-line nuclear magnetic resonance: The signal of liquid oils, J. Am. Oil. Chem. Soc. 49: 153.Google Scholar
  261. Hällgren, B., and Larsson, S. 0., 1959, Separation and identification of alkoxyglycerols. Acta Chem. Scand. 13: 2147.Google Scholar
  262. Hällgren, B., and Larsson, S., 1962, The glyceryl ethers in the liver oils of elasmobranch fish. J. Lipid Res. 3: 31.Google Scholar
  263. Hällgren, B., Ryhage, R., and Stenhagen, E., 1959, The mass spectra of methyl oleate, methyl linoleate and methyl linolenate. Acta Chem. Scand. 13: 845.Google Scholar
  264. Hamberg, M., 1971, Resolution of stereoisomers of w2-hydroxy acids and 2-alkanols by gas-liquid chromatography. Chem. Phys. Lipids 6: 152.Google Scholar
  265. Hammarström, S., 1969, Configuration of 2-hydroxy acids from brain cerebrosides determined by gas chromatography. FEBS lett. 5: 192.PubMedGoogle Scholar
  266. Hammarström, S., 1971a, On the biosynthesis of cerebrosides containing non-hydroxy acids. I. Mass spectrometric evidence for the psychosine pathway, Biochem. Biophys. Res. Comm. 45: 459.PubMedGoogle Scholar
  267. Hammarström, S., 197 lb, On the biosynthesis of cerebrosides containing non-hydroxy acids. 2. Mass spectrometric evidence for the ceramide pathway, Biochem. Biophys. Res. Comm. 45: 468.Google Scholar
  268. Hammarström, S., 1971c, Brain glucosyl ceramides containing 2-hydroxy acids. Identification of molecular species by gas–liquid chromatography—mass spectrometry, Eur. J. Biochem. 21: 388.PubMedGoogle Scholar
  269. Hammarström, S., 1975, Microdetermination of stereoisomers of 2-hydroxy and 3-hydroxy fatty acids, in: Methods in Enzymology, vol. 35, Part B (J. M. Lowenstein, ed.) Academic Press, New York.Google Scholar
  270. Hammarström, S., and Hamberg, M., 1973, Steric analysis of 3-, w4-, w3-, and w2-hydroxy acids and various alkanols by gas–liquid chromatography, Anal. Biochem. 52: 169.PubMedGoogle Scholar
  271. Hammarström, S., and Samuelsson, B., 1972, On the biosynthesis of cerebrosides containing 2-hydroxy acids. Mass spectrometric evidence for biosynthesis via the ceramide pathway, J. Biol. Chem. 247: 1001.PubMedGoogle Scholar
  272. Hanahan, D. J., 1960, Lipide Chemistry, Ch. 2, p. 11, Wiley, New York.Google Scholar
  273. Hanahan, D. J., 1962, L-a-Glycerylphosphorylcholine, Biochem. Prep. 9 :55.Google Scholar
  274. Hanahan, D. J., and Brockerhoff, H., 1960, A synthetic route to mixed-acid L-a-Lecithins and D-a, ß-diglycerides, Arch. Biochem. Biophys. 91: 326.PubMedGoogle Scholar
  275. Hanahan, D. J., Brockerhoff, H., and Barron, E. J., 1960, The site of attack of phospholipase (lecithinase) A on lecithin: A reevaluation, J. Biol. Chem. 235: 1917.PubMedGoogle Scholar
  276. Hanahan, D. J., Ekholm, J., and Jackson, C. M., 1963, Studies on the structure of glyceryl ethers and the glyceryl ether phospholipids of bovine erythrocytes, Biochemistry, 2: 630.PubMedGoogle Scholar
  277. Hancock, A. J., and Kates, M., 1971, A sulfate ester of phosphatidyl glycerol (diether analogue) from Halobacterium cutirubium, Chem. Phys. Lipids 8: 87.Google Scholar
  278. Hasegawa, K., and Suzuki, T., 1973, Determination of molecular species of ovolecithin using gas chromatography—mass spectrometry. Lipids, 8: 631.PubMedGoogle Scholar
  279. Haskins, N. J., Games, D. E., and Taylor, K. T., 1974, Comparison of the field desorption, chemical ionization and electron impact mass spectra of some steroids, Biomed. Mass Spectrom. 1: 423.PubMedGoogle Scholar
  280. Hauser, G., and Eichberg, J., 1973, Improved conditions for the preservation and extraction of polyphosphoinositides, Biochim. Biophys. Acta 326: 201.PubMedGoogle Scholar
  281. Hayashi, A., and Matsubara, T., 1971, Determination of the structure of sphinga-4, 8, dienine from oyster glycolipids by gas chromatography and mass spectrometry Biochim. Biophys. Acta 248: 306.PubMedGoogle Scholar
  282. Hayashi, A., and Matsuura, F., 1973, 2-Hydroxy fatty acid and phytosphingosine-containing ceramide 2-N-methyl amino-ethylphosphonate from Turbo cornutus, Chem. Phys. Lipids 10:51.Google Scholar
  283. Hayashi, A., Matsubara, T., and Matsuura, F., 1975, Characterization of Docosa-4, 15-sphingadienine and 4-hydroxy-docosa-15-sphingenine in sphingophosphono-lipids from Turbo cornutus by gas chromatography mass spectrometry, Chem. Phys. Lipids 14: 102.Google Scholar
  284. Haydar, M., and Hadziyev, D., 1973, Electron spin resonance of free radicals formed in irradiated fatty acid methyl esters, J. Am. Oil Chem. Soc. 50: 171.Google Scholar
  285. Hayes, L., Lowry, R. R., and Tinsley, I. J., 1971, Cholesterol interference in analysis of fatty acid methyl esters, Lipids 6: 65.PubMedGoogle Scholar
  286. Hazlewood, G. P., and Dawson, R. M. C., 1976, A phospholipid deacylating system of bacteria active in a frozen medium, Biochem. J. 153: 49.PubMedGoogle Scholar
  287. Heinen, H. J., Hotzel, Ch., and Beckey, H. D., 1974, Combination of a field desorption ion source with a quadrupole mass analyzer, Int. J. Mass Spectrom. Ion. Phys. 13: 55.Google Scholar
  288. Heller, S. R., 1972, Conversational mass spectral retrieval system and its use as an aid in structure determination, Anal. Chem. 44: 1951.Google Scholar
  289. Heller, S. R., Chang, C. L., and Chu, K. C., 1974a, Interpretation of mass spectrometry data using cluster analysis—alkyl thiolesters, Anal. Chem. 46: 951.Google Scholar
  290. Heller, S. R., Koniver, D. A., Fales, H. M., and Milne, G. W. A., 1974b, Conversational mass spectral search system display and plotting of spectra and dissimilarity comparison, Anal. Chen,. 46: 947.Google Scholar
  291. Helmy, F. M., and Hack, M. H., 1966, An ethanolamine plasmalogen artifact formed by acetone extraction of freeze-dried tissue, Lipids 1: 279.PubMedGoogle Scholar
  292. Hertz, H. S., Rites, R. A., and Biemann, K., 1971, Identification of mass spectra by computer-searching a file of known spectra, Anal. Chem. 43: 681.Google Scholar
  293. Hesse, M., and Leuzinger, F., 1968, A thermal substitution reaction in the mass spectrometer, Adv. Mass Spectrom. 4: 163.Google Scholar
  294. Heyns, K., and Grutzmacher, H. F., 1966, Massenspektromische Analysen von Aminosauren and Peptiden, Fortschr. Chem. Forsch. 6: 536.Google Scholar
  295. Hill, E. E., Husbands, D. R., and Lands, E. M., 1968, The selective incorporation of “C glycerol into different species of phosphatidic acid, phosphatidyl ethanolamine, and phosphatidylcholine, J. Biol. Chem. 243: 4440.PubMedGoogle Scholar
  296. Hinckley, C. C., 1969, Paramagnetic shifts in solutions of cholesterol and the dipyridine adduct of tris-dipivalomethanato/europium(III). A shift reagent, J. Amer. Chem. Soc. 91: 5160.Google Scholar
  297. Hinckley, C. C., 1973, Applications of lanthanide shift reagents, in: Modern Methods of Steroid Analysis, Ch. 11, pp. 265–279 ( E. Heftmann, ed.), Academic Press, New York.Google Scholar
  298. Hine, J., 1950, Carbon dichloride as an intermediate in the basic hydrolysis of chloroform. A mechanism for substitution reactions at a saturated carbon atom, J. Amer. Chem. Soc. 72: 2438.Google Scholar
  299. Hine, J., and Dowell, A. M., 1954, Carbon dihalides as intermediates in the basic hydrolysis of haloforms. III. Combination of carbon dichloride with halide ions, J. Amer. Chem. Soc. 76: 2688.Google Scholar
  300. Hintze, U., Roper, H., and Gercken, G., 1973, Gas chromatography mass spectrometry of Cl–C20 fatty acid benzyl esters, J. Chromatog. 87: 481.Google Scholar
  301. Hippie, J. A., 1947, Peak contour and half-life of metastable ions appearing in mass spectra, Phys. Rev. 71: 594.Google Scholar
  302. Hipple, J. A., and Condon, E. U., 1945, Detection of metastable ions with the mass spectrometer, Phys. Rev. 68: 54.Google Scholar
  303. Hipple, J. A., Fox, R. E., and Condon, E. U., 1946, Metastable ions formed by electron impact in hydrocarbon gases, Phys, Rev. 69: 347.Google Scholar
  304. Hirsch, J., 1963, Factice chromatography: An automatically monitored, liquid-gel system for the separation of non-polar lipids, J. Lipid Res. 4: 1.PubMedGoogle Scholar
  305. Hites, R. A., 1970, Quantitative analysis of triglyceride mixtures by mass spectrometry, Anal. Chem. 42: 1736.Google Scholar
  306. Hites, R. A., 1975, Mass spectrometry of triglycerides, in: Methods in Enzymology, Vol. 35, Part B ( J. M. Lowenstein, ed.), p. 348, Academic Press, New York.Google Scholar
  307. Holla, K. S., and Cornwell, D. G., 1965, Acetic anhydride-trifluoroacetic acid acetolysis for the estimation of glycerol in phosphatidyl choline by gas-liquid chromatography, J. Lipid Res. 6: 322.PubMedGoogle Scholar
  308. Holla, K. S., Horrocks, L. A., and Cornwell, D. G., 1964, Improved determination of glycerol and fatty acids in glycerides and ethanolamine phosphatides by gas-liquid chromatography, J. Lipid Res. 5: 263.PubMedGoogle Scholar
  309. Holm, C. H., 1957, Observation of chemical shielding and spin coupling of 13C nuclei in various chemical compounds by nuclear magnetic resonance, J. Chem. Phys. 26: 707.Google Scholar
  310. Holman, R. T., 1954, Autoxidation of fats and related substances, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 2 ( R. T. Holman, W. O. Lundberg, and T. Malkin, eds.), p. 51, Pergamon Press, London.Google Scholar
  311. Holman, R. T., 1966, General introduction to polyunsaturated acids, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 9 ( R. T. Holman, ed.), p. 6, Pergamon Press, London.Google Scholar
  312. Holman, R. T., and Elmer, O. C., 1947, The rates of oxidation of unsaturated fatty acids and esters, J. Am. Oil Chem. Soc. 24: 127.Google Scholar
  313. Holmes, J. L., and Benoit, F. M., 1972, Metastable ions in mass spectrometry, in: MTP International Review of Science, Vol. 5 ( A. Maccoll, ed.), p. 259, Butterworths, London.Google Scholar
  314. Holtz, R. B., Swenson, P., Abel, M., and Walter, T. A., 1971, Detection of a sebacate contaminant from chloroform, Lipids 6: 523.Google Scholar
  315. Holub, B. H., Kuksis, A., and Thompson, W., 1970, Molecular species of mono-, di-, and triphosphoinositides of bovine brain, J. Lipid Res. 11: 558.PubMedGoogle Scholar
  316. Honig, R. E., 1948, Ionization potentials of some hydrocarbon series, J. Chem. Phys. 16: 105.Google Scholar
  317. Hopkins, C. Y., 1961, Nuclear magnetic resonance in lipid analysis, J. Am. Oil Chem. Soc. 38: 664.Google Scholar
  318. Hopkins, C. Y., 1965, Nuclear magnetic resonance in fatty acids and glycerides, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 8 ( R. T. Holman, ed.), p. 213, Pergamon Press, Oxford.Google Scholar
  319. Hopkins, C. Y., 1968, High-resolution NMR spectroscopy and some examples of its use, J. Am. Oil Chem. Soc. 45: 778.PubMedGoogle Scholar
  320. Horning, M. G., Casparrini, G., and Horning, E. C., 1969, The use of gas-phase analytical methods for the analysis of phospholipids, J. Chromatog. Sci. 7: 267.Google Scholar
  321. Horning, M. G., Murakami, S., and Horning, E. C., 1971, Analyses of phospholipids, ceramides, and cerebrosides by gas chromatography and gas chromatography—mass spectrometry, Am. J. Clin. Nutr. 24: 1086.PubMedGoogle Scholar
  322. Horrocks, L. A., and Cornwell, D. G., 1962, The simultaneous determination of glycerol and fatty acids in glycerides by gas-liquid chromatography, J. Lipid Res. 3: 165.Google Scholar
  323. Horrocks, W. de W., and Sipe, J. P., 1971, Lanthanide shift reagents, a survey, J. Am. Chem. Soc. 93: 6800.Google Scholar
  324. Horsley, W., Sternlicht, H., and Cohen, J. S., 1970, Carbon-13 magnetic resonance studies of amino acids and peptides. II. J. Am. Chem. Soc. 92: 680.Google Scholar
  325. Hoshi, M., Williams, M., and Kishimoto, Y., 1973, Esterification of fatty acids at room temperature by chloroform methanolic HC1-cupric acetate, J. Lipid Res. 14: 599.PubMedGoogle Scholar
  326. Howe, I., 1971, Energetics, kinetics and ion structures, in: Mass Spectrometry, Vol. I ( D. H. Williams, ed.), p. 31, The Chemical Society, London.Google Scholar
  327. Howe, I., 1973, Kinetic and energetic studies of organic ions, in: Mass Spectrometry, Vol. 2 ( D. H. Williams, ed.), p. 33, The Chemical Society, London.Google Scholar
  328. Howe, I., and Williams, D. H., 1968, Variation of relative ion abundances with accelerator potential in the mass spectrometer, Chem. Comm. 4: 220.Google Scholar
  329. Hübscher, G., Hawthorne, J. N., and Kemp, P., 1960, The analysis of tissue phospholipids: hydrolysis procedure and results with pig liver, J. Lipid Res. 1: 433.Google Scholar
  330. Huckerby, T. N., 1972, A general review of proton magnetic resonance, in: Annual Reports on NMR Spectroscopy, Vol. 5A ( E. F. Mooney, ed.), pp. 1–98, Academic Press, New York.Google Scholar
  331. Hughes, R. C., Murau, P. C., and Gundersen, G., 1971, Ultrapure water, Anal. Chem. 43: 691.Google Scholar
  332. Hunneman, D. H., and Richter, W. J., 1972, Migration of dimethylsilyl substituents upon electron-impact: The fragmentation of methyl 12-dimethylsilyl oxyoctadecanoate, Org. Mass Spectrom. 6: 909.Google Scholar
  333. Hvistendahl, G., and Undheim, K., 1970, High-resolution mass spectrometry of trimethylamine, Org. Mass Spectrom. 3: 821.Google Scholar
  334. Ikeda, N., and Fukusumi, K., 1974, Study on quantitative analyses of hydroperoxides and alcohols by NMR shift reagent, J. Am. Oil Chem. Soc. 51: 340.Google Scholar
  335. Iverson, A., 1964, The measured resistivity of pure water and determination of the limiting mobility of OH- from 5 to 55°, J. Phys. Chem. 68: 515.Google Scholar
  336. Jacini, G., and Fedeli, E., 1969, New approaches to the fractionation of lipids, in: Advances in Experimental Medicine and Biology, Vol. 4 ( W. L. Holmes, L. A. Carlson, and R. Paoletti, eds.), pp. 639–650, Plenum Press, New York.Google Scholar
  337. Jackman, L. M., 1966, Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry, Pergamon Press, Oxford.Google Scholar
  338. Jacob, J., and Poltz, J., 1974, Chemical composition of uropygial gland secretion in owls, J. Lipid Res. 15: 243.PubMedGoogle Scholar
  339. Jaeger, R. J., and Rubin, R. J., 1970, Plasticizers from plastic devices. Extraction, metabolism, and accumulation by biological systems, Science 170: 460.PubMedGoogle Scholar
  340. Jalonen, J., and Pihlaja, K., 1973, Ionization and appearance potentials in structure analysis, a review, Org. Mass Spectrom. 7: 1203.Google Scholar
  341. James, A. T., Ravenhill, J. R., and Scott, R. P., 1964, A new method for the automatic detection of zones eluted from the liquid chromatogram, Chem. Ind. 1964: 746.Google Scholar
  342. Jatzkewitz, H., and Mehl, E., 1960, Fur Dünnschicht-chromatographic der Gehirn-lipoide, ihrer um-and Abbauprodukte, Hoppe-SeyL Z. Physiol. Chem. 320: 251.Google Scholar
  343. Jelus, B. L., Munson, B., and Fenselau, C., 1974, Reagent gases for GC-MS analyses, Biomed. Mass Spectrom. 1: 96.PubMedGoogle Scholar
  344. Jennings, K. R., 1965, Metastable transitions in the mass spectrum of benzene, J. Chem. Phys. 43: 4176.Google Scholar
  345. Jennings, K. R., 1971, Some aspects of metastable transitions, in: Mass Spectrometry: Techniques and Applications ( G. W. A. Milne, ed.), pp. 419–458, Wiley Interscience, New York.Google Scholar
  346. Johnson, A. R., Murray, K. E., Fogerty, A. C., Kennett, B. H., Pearson, J. A., and Shen-stone, F. S., 1967, The reaction of methyl sterculate and malvalate with silver nitrate silica gel and its use as a basis for the estimation of cyclopropene fatty acids, Lipids 2: 316.PubMedGoogle Scholar
  347. Johnson, B. M., and Taylor, J. W., 1972a, Hexafluoroacetone ketals as derivatives for positionals and geometrical characterization of double bonds, Anal. Chem. 44: 1438.Google Scholar
  348. Johnson, B. M., and Taylor, J. W., 1972b, Photoionization mass spectrometry. III. Comparison of photon and electron impact excitation of cis-and trans-2-decene, Int. J. Mass Spectrom. Ion Phys. 10: 1.Google Scholar
  349. Johnson, C. B., 1973, Separation of cis-and trans-isomers of 1,2-benzylidene glyceryl esters, Lipids 8: 479.Google Scholar
  350. Johnson, C. B., and Holman, R. T., 1966, Mass spectrometry of lipids. II. Monoglycerides, their diacetyl derivatives and their trimethylsilyl ethers, Lipids 1: 371.PubMedGoogle Scholar
  351. Johnson, C. B., Pearson, A. M., and Dugan, Jr., L. R., 1970, Gas chromatographic analysis of the dimethylhydrazones of long chain aldehydes, Lipids 5: 958.PubMedGoogle Scholar
  352. Johnson, L. F., and Jankowski, W. C., 1972, Carbon-13 NMR Spectra, pp. 455, 463, Wiley, New York.Google Scholar
  353. Johnston, P. V., and Roots, B. I., 1964, A source of contamination in the ultramicro analysis of methyl esters of fatty acids by gas-liquid chromatography, J. Lipid Res. 5: 477.PubMedGoogle Scholar
  354. Jost, P., Libertini, L. J., Herbert, V. C., and Griffith, O. H., 1971, Lipid spin labels in lecithin multilayers. A study of motion along fatty acid chains, J. Mol. Biol. 59: 77.PubMedGoogle Scholar
  355. Jungalwala, F. B., Turel, R. J., Evans, J. E., and McCluer, R. H., 1975, Sensitive analysis of ethanolamine-and serine-containing phosphoglycerides by high-performance liquid chromatography, Biochem. J. 145: 517.PubMedGoogle Scholar
  356. Junk, G. A., 1972, Gas chromatograph-mass spectrometer combinations and their applications, Int. J. Mass Spectrom. Ion Phys. 8: 1.Google Scholar
  357. Junk, G., and Svec, H., 1963, The mass spectra of the a-amino acids, J. Am. Chem. Soc. 85: 839.Google Scholar
  358. Kanfer, J. N., 1969, Preparations of gangliosides, in: Methods in Enzymology, Vol. 14 ( J. M. Lowenstein, ed.), p. 660, Academic Press, New York.Google Scholar
  359. Karlander, S. G., Karlsson, K. A., Leffler, H., Lilja, A., Samuelsson, B. E., and Steen, G. 0., 1972, The structure of sphingomyelin of the honey bee (Apis melifera), Biochim. Biophys. Acta 270: 117.Google Scholar
  360. Karlander, S. G., Karlsson, K. A., and Pascher, I., 1973, Analysis of polar pairs of phospholipids. N-Demethylation of choline-containing lipids for gas chromatography and mass spectrometry, Biochim. Biophys. Acta 326: 174.PubMedGoogle Scholar
  361. Karlsson, K. A., 1967, The chemical structure of a dienoic long-chain base of human blood plasma sphingomyelins, Acta Chem. Scand. 21: 2577.PubMedGoogle Scholar
  362. Karlsson, K. A., 1968, Enzymatic hydrolysis of sphingomyelins: Use in structure analysis, Acta Chem. Scand. 22: 3050.Google Scholar
  363. Karlsson, K. A., 1970a, Analysis of compounds containing phosphate and phosphonate by gas-liquid chromatography and mass spectrometry, Biochem. Biophys. Res. Comm. 39: 847.PubMedGoogle Scholar
  364. Karlsson, K. A., 19706, On the chemistry and occurence of sphingolipid long-chain bases, Chem. Phys. Lipids 5: 6.Google Scholar
  365. Karlsson, K. A., 1973, Carbohydrate composition and sequence analysis of cell surface components by mass spectrometry, characterization of the major monosialoganglioside of brain, FEBS Lett. 32: 317.PubMedGoogle Scholar
  366. Karlsson, K. A., and Pascher, I., 1974, Resolution and chromatographic configuration analysis of 2-hydroxy fatty acids, Chem. Phys. Lipids 12: 65.PubMedGoogle Scholar
  367. Karlsson, K. A., Samuelsson, B. E., and Steen, G. 0., 1969, Mass spectrometry of polar complex lipids. Analysis of a sulfatide derivative, Biochem. Biophys. Res. Comm. 37: 22.PubMedGoogle Scholar
  368. Karlsson, K. A., Pascher, I., Samuelsson, B. E., and Steen, G. O., 1972a, Mass spectra of trimethylsilyl derivatives of homogeneous cerebrosides (monoglycosyl ceramides), Chem. Phys. Lipids 9: 230.PubMedGoogle Scholar
  369. Karlsson, K. A., Samuelsson, B. E., and Steen, G. O., 19726, Identification of a xylose- containing cerebroside in the salt gland of the herring gull, J. Lipid Res. 13: 169.Google Scholar
  370. Karlsson, K. A., Samuelsson, B. E., and Steen, G. O., 1973a, Separation of monoglycosylceramides (cerebrosides) of bovine kidney into subgroups and characterization by mass spectrometry, Biochim. Biophys. Acta 306: 317.PubMedGoogle Scholar
  371. Karlsson, K. A., Samuelsson, B. E., and Steen, G. O., 1973b, Improved identification of monomethyl paraffin chain branching (close to the methyl end) of long-chain compounds by gas chromatography and mass spectrometry, Chem. Phys. Lipids 11: 17.Google Scholar
  372. Karlsson, K. A., Samuelsson, B. E., and Steen, G. O., 1973c, Detailed structure of sphingomyelins and ceramides from different regions of bovine kidney with special reference to long-chain bases, Biochim. Biophys. Acta 316: 336.PubMedGoogle Scholar
  373. Karlsson, K. A., Pascher, I., Pimlott, W., and Samuelsson, B. E., 1974a, Use of mass spectrometry for the carbohydrate composition and sequence analysis of glycosphingolipids, Biomed. Mass Spectrom. 1: 49.PubMedGoogle Scholar
  374. Karlsson, K. A., Pascher, I., and Samuelsson, B. E., 1974b, Analysis of intact gangliosides by mass spectrometry. Comparison of different derivatives of a hematoside of a tumor and the major monosialoganglioside of brain, Chem. Phys. Lipids 12: 271.PubMedGoogle Scholar
  375. Karplus, M., 1959, Contact electron-spin coupling of nuclear magnetic moments, J. Chem. Phys. 30: 11.Google Scholar
  376. Kates, M., 1967, Paper chromatography of phosphatides and glycolipids on silicic-acidimpregnated filter paper, Lipid chrom. Anal. 1: 1.Google Scholar
  377. Kates, M., 1972, Techniques of lipidology: Isolation, analysis and identification of lipids, in: Laboratory Techniques in Biochemistry and Molecular Biology ( T. S. Work and E. Work, eds.), North-Holland/American Elsevier, Amsterdam and New York.Google Scholar
  378. Kates, M., and Hancock, A. J., 1971, Determination of ionizable acid groups in phosphatidyl glycerophosphate (diphytanyl ether analogue) by proton magnetic resonance spectroscopy, Biochim. Biophys. Acta 248: 254.PubMedGoogle Scholar
  379. Kaufmann, H. C., and Wessels, H., 1964, Thin-layer chromatography in the field of fats. XIV. Separation of triglycerides by the combination of adsorption and reversed phase chromatography, Fette Seifen Anstrichm. 66: 81.Google Scholar
  380. Kawanami, J., and Otsuka, H., 1969, Lipids of Streptomyces sioyaensis. VI. On the ß-hydroxy fatty acids in siolipin, Chem. Phys. Lipids 3: 135.PubMedGoogle Scholar
  381. Kawanami, J., Kumura, A., Nakagawa, Y., and Otsuka, H., 1969, Lipids of Streptomyces sioyaensis. V. On the 2-hydroxy-l3-methyl-tetradecanoic acid from phosphatidyl ethanolamine, Chem. Phys. Lipids 3: 29.Google Scholar
  382. Kaye, G. W. C., and Laby, T. H., 1971, Tables of Physical and Chemical Constants, 13th ed., Longmans Groups Ltd., London.Google Scholar
  383. Ke, P. J., Ackman, R. G., and Hooper, D. L., 1974, NMR determination of wax esters in marine lipids, Anal. Chim. Acta 69: 253.Google Scholar
  384. Kemp, P., and Dawson, R. M. C., 1968, Isomerisation of linolenic acid by rumen microorganisms, Biochem. J. 109: 477.PubMedGoogle Scholar
  385. Kemp, P., and Dawson, R. M. C., 1969, Isolation of a new phospholipid, phosphatidyl-N(2-hydroxyethyl)-alanine, from rumen protozoa, Biochem. J. 113: 555.PubMedGoogle Scholar
  386. Kemp, P., Hübscher, G., and Hawthorne, J. N., 1969, Phosphoinositides. 3. Enzymic hydrolysis of inositol-containing phospholipide, Biochem. J. 79: 193.Google Scholar
  387. Kemp, P., Dawson, R. M. C., and Klein, R. A., 1972, A new bacterial sphingophospholipid containing 3-aminopropane-1,2-diol, Biochem. J. 130: 221.PubMedGoogle Scholar
  388. Kemp, P., White, R. W., and Lander, D. J., 1975, The hydrogenation of unsaturated fatty acids by five bacterial isolates from the sheep rumen, including a new species, J. Gen. Microbiol. 90: 100.PubMedGoogle Scholar
  389. Kenner, G. W., and Stenhagen, E., 1964, Location of double bonds by mass spectrometry, Acta Chem. Scand. 18: 1551.Google Scholar
  390. Keulemans, A. I. M., 1959, Gas Chromatography, p. 134, Reinhold, New York. Kiesenbach, R., 1961, Gas chromatography. The effect of gaseous diffusion on mass transfer in packed columns, Anal. Chem. 33: 23.Google Scholar
  391. Kircher, H. W., 1964, The addition of mercaptans to methyl sterculate and sterculene: an hypothesis concerning the nature of the biological activity exhibited by cyclopropene derivatives, J. Am. Oil Chem. Soc. 41: 4.Google Scholar
  392. Kirkland, J. J., 1971, Modern Practice of Liquid Chomatography, Wiley Interscience, New York.Google Scholar
  393. Kiser, R. W., 1965, Introduction to Mass Spectrometry and Its Applications, Prentice-Hall, Englewood Cliffs, N. Y.Google Scholar
  394. Kleiman, R., and Spencer, G. F., 1973, Gas chromatography—mass spectrometry of methyl esters of unsaturated oxygenated fatty acids, J. Amer. Oil Chem. Soc. 50:31. Klein, R. A., 1970a, The detection of oxidation in liposome preparations, Biochim. Biophys. Acta 210: 486.Google Scholar
  395. Klein, R. A., 1970b, The large-scale preparation of unsaturated phosphatidyl cholines from egg yolk, Biochim. Biophys. Acta 219: 496.PubMedGoogle Scholar
  396. Klein, R. A., 197la, Mass spectrometry of the phosphatidyl cholines: dipalmitoyl, dioleoyl, and stearoyl-oleoyl glycerylphosphorylcholines, J. Lipid Res. 12: 123.Google Scholar
  397. Klein, R. A., 197 lb, Mass spectrometry of the phosphatidylcholines: fragmentation processes for dioleoyl and stearoyl-oleoyl glycerylphosphorylcholine, J. Lipid Res. 12: 628.Google Scholar
  398. Klein, R. A., 1972, Mass spectrometry of the phosphatidyl amino alcohols: Detection of molecular species and use of low-voltage spectra and metastable scanning in the elucidation of structure, J. Lipid Res. 13: 672.PubMedGoogle Scholar
  399. Klein, R. A., 1973, Phosphatidyl choline molecular species, Ph. D. thesis, University of Cambridge.Google Scholar
  400. Klein, R. A., 1974, Mass spectrometry as a microanalytical tool in lipid analysis, Biochem. Soc. Trans. 2: 1057.Google Scholar
  401. Klem, H. P., Hintze, U., and Gerken, G., 1973, Quantitative preparation and gas chromatography of short and medium chain fatty acid benzyl esters (C1–C12), J. Chromatog. 75: 19.Google Scholar
  402. Klopfenstein, W. E., 1971, On methylation of unsaturated acids using boron trihalidemethanol reagents, J. Lipid Res. 12: 773.PubMedGoogle Scholar
  403. Knewstubb, P. F., 1971a, A ballistic model for ion breakdown, Int. J. Mass Spectrom. Ion Phys. 6: 217.Google Scholar
  404. Knewstubb, P. F., 1971b, On the detailed formulation of rate coefficients for unimolecular fragmentation processes, Int. J. Mass Spectrom. Ion Phys. 6: 229.Google Scholar
  405. Knewstubb, P. F., and Reid, N. W., 1970, The unimolecular decomposition of excited polyatomic ions studied by time of flight mass spectrometry, Int. J. Mass Spectrom. Ion Phys. 5: 361.Google Scholar
  406. Knoche, H. W., 1971, Incorporation of oxygen-18 into the oxirane ring of cis-9,10-epoxyoctadecanoic acid, Lipids 6: 581.Google Scholar
  407. Koritala, S., and Rohwedder, W. K., 1972, Formation of an artifact during methylation of conjugated fatty acids, Lipids 7: 274.Google Scholar
  408. Kornberg, R. D., and McConnell, H. M., 1971a, Inside-outside transitions of phospholipid in vesicle membranes, Biochemistry, 10: 1111.PubMedGoogle Scholar
  409. Kornberg, R. D., and McConnell, H. M., 1971b, Lateral diffusion of phospholipids in a vesicle membrane, Proc. Nat. Acad. Sci. 68: 2564.PubMedGoogle Scholar
  410. Kramer, J. K. G., Baumann, W. J., and Holman, R. T., 1971a, Mass spectrometric analysis of long-chain alk-1-enyl ether esters and alkyl ether esters of diols, Lipids 6: 492.Google Scholar
  411. Kramer, J. K. G., Holman, R. T., and Baumann, W. J., 1971b, Mass spectrometric analysis of mono-and dialkyl ethers of diols, Lipids 6 :727.Google Scholar
  412. Krisnangkura, K., and Sweeley, C. C., 1974, Mass spectra of various deuterium-labelled forms of bis-O-trimethylsilyl-N-acetyl sphinganine, Chem. Phys. Lipids 13: 415.PubMedGoogle Scholar
  413. Kuksis, A., 1972, Newer developments in determination of structure of glycerides and phosphoglycerides, Prog. Chem. Fats Other Lipids 12 :1–163.Google Scholar
  414. Kuksis, A., 1973a, Progress in the analysis of lipids. XI. Gas chromatography, part 3, Fette Seifen Anstrichm. 75: 317.Google Scholar
  415. Kuksis, A., 1973b, Progress in the analysis of lipids. XII. Gas chromatography, part 4, Fette Seifen Anstrichm. 75: 420.Google Scholar
  416. Kuksis, A., and Marai, L., 1967, Determination of the complete structure of natural lecithins, Lipids 2: 217.PubMedGoogle Scholar
  417. Kuksis, A., Marai, L., and Gomall, D. A., 1967, Direct gas chromatographic examination of total lipid extracts, J. Lipid Res. 8: 352.PubMedGoogle Scholar
  418. Kunz, F., 1973, Separation of “neutral” lipids, particularly of all classes of partial glycerides by one-dimensional thin-layer chromatography, Biochim. Biophys. Acta 296: 331.PubMedGoogle Scholar
  419. Kusamran, K., and Polgar, N., 1971, Determination of the position of ethylenic linkages in lipids, Lipids 6 :961.Google Scholar
  420. Laine, R. A., Griffin, P. F. S., Sweeley, C. C., and Brennan, P. J., 1972, Monoglucosyloxyoctadecenoic acid—A glycolipid from Aspergillus niger, Biochemistry 11: 2267.Google Scholar
  421. Lambein, F., and Wolk, C. 0., 1973, Structural studies of the glycolipids from the envelope of the heterocyst of Anabaena cylindrica, Biochemistry 12: 791.Google Scholar
  422. Laser, H., Klein, R. A., Kemp, P., Lander, D., and Miller, N. G. A., 1975, Changes in the neutral lipid content of erythrocytes parasitized by Plasmodium knowlesi, Parasitology 71: V.Google Scholar
  423. Lauer, W. M., Aasen, A. J., Graff, G., and Holman, R. T., 1970, Mass spectrometry of triglycerides. I. Structural effects, Lipids 5: 861.PubMedGoogle Scholar
  424. Lauterbur, P. C., 1957, 13C Nuclear magnetic resonance spectra, J. Chem. Phys. 26: 217.Google Scholar
  425. Lauwers, W., Serum, J. W., and Vandewalle, M., 1973, Studies in organic mass spectrometry. XIII. Investigation of electron impact-induced isomerisation of aß and ßy unsaturated esters, Org. Mass Spectrom. 7: 1027.Google Scholar
  426. Lawrence, J. G., 1973, High-speed liquid chromatography of nonpolar lipids, J. Chroma-tog. 84: 299.Google Scholar
  427. Lawrence, W. H., Turner, J. E., and Autian, J., 1969, Reevaluation of plastic tubings currently used in medical and paramedical applications, J. Biomed. Mater. Res. 3: 291.PubMedGoogle Scholar
  428. Ledeen, R. W., Kundu, S. K., Price, H. C., and Fong, J. W., 1974, Mass spectra of permethyl derivatives of glycosphingolipids, Chem. Phys. Lipids 13: 429.PubMedGoogle Scholar
  429. Lee, A. G., Birdsall, N. J. M., Levine, Y. K., and Metcalfe, J. C., 1972, High-resolution proton relaxation studies of lecithins, Biochim. Biophys. Acta 255: 43.PubMedGoogle Scholar
  430. Lee, A. G., Birdsall, N. J. M., and Metcalfe, J. C., 1974, Nuclear magnetic relaxation and the biological membrane, Meth. in Membr. Bio. 2:1.Google Scholar
  431. Lee, K. Y., 1971, Loss of lipid to plastic tubing, J. Lipid Res. 12: 635.PubMedGoogle Scholar
  432. Letters, R., 1966, Phos moli-ids of yeast. II. Extraction, isolation and characterisation of yeast phospholipids, Biochim. Biophys. Acta 116: 489.PubMedGoogle Scholar
  433. Levine, Y. K., Birdsall, N. J. M., Lee, A. G., and Metcalfe, J. C., 1972, 13C nuclear magnetic resonance relaxation measurements of synthetic lecithins and the effect of spin-labeled lipids, Biochemistry 11: 1416.Google Scholar
  434. Levsen, K., and Beckey, H. D., 1971, The study of rearrangement reactions by field ionization mass spectrometry and theoretical aspects, Int. J. Mass Spectrom. Ion Phys. 7: 341.Google Scholar
  435. Levsen, K., and Beckey, H. D., 1972a, The study of rearrangement reactions by field ionization mass spectrometry. II. Temperature dependence, Int. J. Mass Spectrom. Ion Phys. 9: 51.Google Scholar
  436. Levsen, K., and Beckey, H. D., 19726, The study of rearrangement reactions by field ionization mass spectrometry. III. Experimental results for different types of reactions, Int. J. Mass Spectrom. Ion Phys. 9: 63.Google Scholar
  437. Levsen, K., and Beckey, H. D., 1974, Kinetics of competing rearrangement reactions and direct bond cleavages. A field ionization study, Int. J. Mass Spectrom. Ion Phys. 15: 333.Google Scholar
  438. Levy, G. C., and Nelson, G. L., 1972, Carbon-13 Nuclear Magnetic Resonance for Organic Chemists, Wiley-Interscience, New York.Google Scholar
  439. Liedtke, R. J., Sheikh, Y. M., Duffield, A. M., and Djerassi, C., 1972, Mass spectrometry in structural and stereochemical problems. CCXIX. Identification of an unidirectional quadruple hydrogen transfer process in 7-phenyl-hept-3-en-2-one 0-methyl oxime ether, Org. Mass Spectrom. 6: 1271.Google Scholar
  440. Lindeman, L. P., and Adams, J. Q., 1971, Carbon-13 Nuclear magnetic resonance spectrometry. Chemical shifts for the paraffins through C9, Anal. Chem. 43: 1245.Google Scholar
  441. Lindqvist, B., Sjögren, I., and Nordin, R., 1974, Preparative fractionation of triglyceride mixtures according to acyl carbon number, using hydroxyalkoxypropyl sephadex, J. Lipid Res. 15: 65.PubMedGoogle Scholar
  442. Linstead, R. P., and Whalley, M., 1950, The formation of crystalline complexes between urea and esters, and their application to the separation of mixtures of esters, J. Chem. Soc. 1950: 2987.Google Scholar
  443. Litchfield, C., 1968, Triglyceride analysis by consecutive liquid—liquid partition and gasliquid chromatography, Ephedra nevadensis seed fat, Lipids 3: 170.PubMedGoogle Scholar
  444. Litchfield, C., 1972, Analysis of Triglycerides, Academic Press, New York.Google Scholar
  445. Lossing, F. P., Tickner, A. W., and Bryce, W. A., 1951, The ionization potentials of the deuterated methanes, J. Chem. Phys. 19: 1254.Google Scholar
  446. Lough, A. K., 1964, The production of methoxy-substituted fatty acids as artifacts during the esterification of unsaturated fatty acids with methanol containing boron trifluoride, Biochem. J. 90: 4c.PubMedGoogle Scholar
  447. Lovins, R. E., Ellis, S. R., Tolbert, G. D., and McKinney, C. R., 1973, Liquid chromatography—mass spectrometry coupling of a liquid chromatograph to a mass spectrometer, Anal. Chem. 45: 1553.Google Scholar
  448. Lowry, R. R., 1968, Ferric chloride spray detector for cholesterol and cholesteryl esters on thin-layer chromatograms, J. Lipid Res. 9: 397.PubMedGoogle Scholar
  449. Lucas, C. C., Patterson, J. M., and Ridout, J. H., 1958, Solubility of tissue phosphatides in acetone, Arch. Biochem. Biophys. 78: 546.PubMedGoogle Scholar
  450. Lukacs, G., Piriou, F., Gero, S. D., Van Dorp, D. A., Hagaman, E. W., and Wenkert, E., 1973, Carbon-13 nuclear magnetic resonance spectroscopy of naturally occurring substances. Prostaglandins, Tetrahedron Lett. 1973: 515.Google Scholar
  451. Lundberg, W. 0., 1962, Mechanism and products of lipid oxidation, in: Lipids and their Oxidation ( H. W. Schultz, E. A. Day, and R. O. Sinnhuber, eds.) Avi. Pub. Co., Conn., U.S.A.Google Scholar
  452. Lustig, E., and Moniz, W. B., 1966, Nuclear magnetic resonance spectrometry, Anal. Chem. 38: 331R.Google Scholar
  453. Luthra, M. G., and Sheltawy, A., 1972a, The chromatographic separation of phospho- lipids on alumina with solvents containing ammonium salts, Biochem. J. 126: 251.PubMedGoogle Scholar
  454. Luthra, M. G., and Sheltawy, A., 1972b, The fractionation of phosphatidylinositol into molecular species by thin-layer chromatography on silver nitrate—impregnated silica gel, Biochem. J. 126: 1231.PubMedGoogle Scholar
  455. Lynden-Bell, R. M., and Harris, R. K., 1969, Nuclear Magnetic Resonance Spectroscopy, Nelson, London.Google Scholar
  456. MacFarlane, M. G., 1964, Phosphatidylglycerols and lipo-amino acids, in: Advances in Lipid Research, Vol. 2 ( R. Paoletti and D. Kritchevsky, eds.), p. 91, Academic Press, London.Google Scholar
  457. McCloskey, J. A., 1969, Mass spectrometry of lipids and steroids, in: Methods in Enzymology, Vol 14 ( J. M. Lowenstein, ed.), p. 382, Academic Press, New York.Google Scholar
  458. McCloskey, J. A., 1975, Gas chromatography—mass spectrometry of esters of perdeuterated fatty acids, in: Methods in Enzymology, Vol 35, Part B ( J. M. Lowenstein, ed.), p. 340, Academic Press, New York.Google Scholar
  459. McCloskey, J. A., and Law, J. H., 1967, Ring location in cyclopropane fatty acid esters, Lipids 2: 225.PubMedGoogle Scholar
  460. McCloskey, J. A., and McClelland, M. J., 1965, Mass spectra of O-isopropylidene derivatives of unsaturated fatty esters, J. Am. Chem. Soc. 87: 5090.Google Scholar
  461. McDaniel, E. W., Cermak, V., Dalgarno, A., Ferguson, E. E., and Friedman, L., 1970, Ion—Molecule Reactions, p. 5, Wiley, New York.Google Scholar
  462. McKinney, J. D., 1974, Lecithin reversed micelle formation and interactions with pp’DDA and kelthane NMR observations, Chem. Phys. Lipids 13: 249.Google Scholar
  463. McLafferty, F. W., 1959, Molecular rearrangements, Anal. Chem. 31: 82.Google Scholar
  464. McLafferty, F. W., 1967, Interpretation of Mass Spectra, W. A. Benjamin, Inc., New York and Amsterdam.Google Scholar
  465. McLafferty, F. W., and Fairweather, R. B., 1968, Metastable ion characteristics. VIII. Characterization of ion decomposition mechanisms by metastable ion abundances, J. Am. Chem. Soc. 90: 5915.Google Scholar
  466. McLafferty, F. W., and Gohlke, R. S., 1959, Mass spectrometric analysis aromatic acids and esters, Anal. Chem. 31: 2076.Google Scholar
  467. McLafferty, F. W., and Pinzelik, J., 1966, Mass spectrometry, J. Am. Oil Chem. Soc. 38: 350R.Google Scholar
  468. McMaster, B. N., 1975, Theory and energetics of mass spectra, in: Mass Spectrometry, Vol. 3 ( R. A. W. Johnstone, ed.), p. 1, The Chemical Society, London.Google Scholar
  469. Mahadevan, U., 1967, Thin-layer chromatography of neutral glycerides and fatty acids, in: Lipid Chromatographic Analysis, Vol. 1 ( G. V. Marinetti, ed.), p. 191, Marcel Dekker, New York.Google Scholar
  470. Mangold, H. K., 1969, Aliphatic lipids, in: Thin Layer Chromatography ( E. Stahl, ed.), p. 363, Springer-Verlag, New York.Google Scholar
  471. Markey, S. P., and Wenger, D. A., 1974, Mass spectra of complex molecules. I. Chemical ionization of sphingolipids, Chem. Phys. Lipids 12: 182.PubMedGoogle Scholar
  472. Markovetz, A. J., Stumpf, P. K., and Hammarström, S., 1972, Fat metabolism in higher plants. LIII. Characterization of the product of the peanut a-oxidation system, Lipids 7: 159.Google Scholar
  473. Matsubara, T., and Hayashi, A., 1973, Identification of molecular species of ceramide aminoethylphosphonate from oyster adductor by gas-liquid chromatography-mass spectrometry, Biochim. Biophys. Acta 296: 171.PubMedGoogle Scholar
  474. Matsuura, F., Matsubara, T., and Hayashi, A., 1973, Identification of molecular species of ceramide 2-N-methylaminoethylphosphonates containing normal fatty acids and dihydroxy long-chain bases from Turbo cornutus, J. Biochem. 74: 49.Google Scholar
  475. Mazur, R. H., Ellis, B. W., and Cammarata, S., 1962, A new reagent for detection of peptides, nucleotides, and other NH-containing compounds on paper chromatograms, J. Biol. Chem. 237: 1619.PubMedGoogle Scholar
  476. Mead, T. J., Morris, H. R., Bowie, J. H., and Howe, I., 1973, Natural products, in: Mass Spectrometry, Vol. 2 ( D. H. Williams, ed.), p. 143, The Chemical Society, London.Google Scholar
  477. Mecham, D. K., and Mohammad, A., 1955, Extraction of lipids from wheat products, Cereal Chem. 32: 405.Google Scholar
  478. Meier, K., and Seibl, J., 1947, Measurement of ion residence times in a commercial electron impact ion source, Int. J. Mass Spectrom. Ion Phys. 14: 99.Google Scholar
  479. Meisels, G. G., and Geissner, B. G., 1971, Threshold behavior and the determination of appearance potentials from second differential ionization efficiencies, Int. J. Mass Spectrom. Ion. Phys. 7: 489.Google Scholar
  480. Mellon, F. A., 1975, Computerized data acquisition and interpretation, in: Mass Spec- trometry, Vol. 3 ( R. A. W. Johnstone, ed.), p. 117, The Chemical Society, London.Google Scholar
  481. Metcalfe, J. C., Birdsall, N. J. M., Feeney, J., Lee, A. G., Levine, Y. K., and Partington, P., 1971, 13C NMR spectra of lecithin vesicles and erythrocyte membranes, Nature 233: 199.Google Scholar
  482. Metcalfe, J. C., Birdsall, N. J. M., and Lee, A. G., 1972,13C NMR spectra of Acholeplasma membranes containing 13C labeled phospholipids, FEBS Letters 21: 335.Google Scholar
  483. Meuzelaar, H. L. C., Posthumus, M. A., Kistemaker, P. G., and Kistemaker, J., 1973, Curie point pyrolysis in direct combination with low voltage electron impact ionization mass spectrometry, Anal. Chem. 45: 1546.Google Scholar
  484. Meuzelaar, H. L. C., Kistemaker, P. G., and Posthumus, M. A., 1974, Recent advances in pyrolysis mass spectrometry of complex biological materials, Blamed. Mass Spectrom. 1: 312.Google Scholar
  485. Michaelson, D. M., Horwitz, A. F., and Klein, M. P., 1973, Transbilayer asymmetry and surface homogeneity of mixed phospholipids in cosonicated vesicles, Biochemistry 12: 2637.PubMedGoogle Scholar
  486. Michell, R. H., Hawthorne, J. N., Coleman, R., and Karnovsky, M. L., 1970, Extraction of polyphosphoinositides with neutral and acidified solvents, a comparison of guinea-pig brain and liver, and measurements of rat liver inositol compounds which are resistant to extraction, Biochim. Biophys. Acta 210: 86.PubMedGoogle Scholar
  487. Middleditch, B. S., and Desiderio, D. M., 1973a, Mass spectra of prostaglandins. II. Trimethylsilyl and alkyloxime-trimethylsilyl derivatives of prostaglandins Bl and B2, Lipids, 8: 267.Google Scholar
  488. Middleditch, B. S., and Desiderio, D. M., 1973b, Mass spectra of prostaglandins. III. Trimethylsilyl and alkyl oxime-trimethylsilyl derivatives of prostaglandins of the E series, J. Org . Chem. 38: 2204.Google Scholar
  489. Middleditch, B. S., and Desiderio, D. M., 1973c, Mass spectra of prostaglandins. IV. Trimethylsilyl derivatives of prostaglandins of the F series. Anal. Biochem. 55: 509.PubMedGoogle Scholar
  490. Miettinen, T., and Takki-Luukkainen, I. T., 1959, Use of butyl acetate in determination of sialic acid, Acta Chem. Scand. 13: 856.Google Scholar
  491. Migahed, M. D., and Beckey, H. D., 1971, Production and properties of organic micro-needles on field ion emitters, Int. J. Mass Spectrom. Ion. Phys. 7: 1.Google Scholar
  492. Miller, C. E., 1965, Hydrogenation with di-imide, J. Chem. Educ. 42: 354.Google Scholar
  493. Millett, F., Hargrave, P. A., and Raftery, M. A., 1973, Natural abundance 73C nuclear magnetic resonance spectra of the lipid in intact bovine retinal rod outer segment membranes, Biochemistry 12: 3591.PubMedGoogle Scholar
  494. Milne, G. W. A., 197la, Mass Spectrometry: Techniques and Applications Wiley, Inter-science, New York.Google Scholar
  495. Milne, G. W. A., 1971b, The application of mass spectrometry to problems in medicine and biochemistry, in: Mass Spectrometry: Techniques and Applications ( G. W. A. Milne, ed.), p. 327, Wiley Interscience, New York.Google Scholar
  496. Minnikin, D. E., 1975, Location of double bonds in long-chain esters by mass spectroscopy of methoxyhalogeno derivatives prepared from methoxymercuriacetate adducts, Lipids 10: 55.Google Scholar
  497. Minnikin, D. E., Abley, P., McQuillin, F. J., Kusamcan, K., Maskens, K., and Polgar, N., 1974, Location of double bonds in long-chain esters by methoxymercurationdemercuration followed by mass spectroscopy, Lipids 9: 135.PubMedGoogle Scholar
  498. Miwa, T. K., Mikolajczak, K. L., Earle, F. R., and Wolff, I. A., 1960, Gas chromatographic characterization of fatty acids. Identification constants for mono-and dicarboxylic methyl esters, Anal. Chem. 32: 1739.Google Scholar
  499. Morris, L. J., 1963, Separation of isomeric long-chain polyhydroxy acids by thin-layer Chromatography, J. Chromatog. 12: 321.Google Scholar
  500. Morris, L. J., 1966, Separations of lipids by silver ion chromatography, J. Lipid Res. 7:7. Morris, L. J., Holman, R. T., and Fontell, K., 1960, Alteration of some long-chain esters during gas—liquid chromatography, J. Lipid Res. 1: 412.Google Scholar
  501. Morrison, J. D., 1972, Ionization and appearance potentials, in: MTP International Review of Science, Vol. 5 ( A. Maccoll, ed.), p. 25, Butterworths, London.Google Scholar
  502. Morrison, W. R., 1969, Polar lipids in bovine milk. I. Long-chain bases in sphingomyelin, Biochim. Biophys. Acta 176: 537.PubMedGoogle Scholar
  503. Morrison, W. R., and Smith, L. M., 1964, Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol, J. Lipid Res. 5: 600.PubMedGoogle Scholar
  504. Morrison, A., Barratt, M. D., and Aneja, R., 1970, Mass spectrometry of some deuterated 1,3-distearins, Chem. Phys. Lipids 4: 47.Google Scholar
  505. Munson, M. S. B., and Field, F. H., 1966, Chemical ionization mass spectrometry. I. General introduction, J. Am. Chem. Soc. 88: 2621.Google Scholar
  506. Myher, J. J., Marai, L., L., and Kuksis, A., 1974, Identification of monoacyl and monoalkyl glycerols by gas—liquid chromatography—mass spectrometry using polar siloxane liquid phases, J. Lipid Res. 15: 586.Google Scholar
  507. Nadenicek, J. D., and Privett, O. S., 1968, Preparation of pure polyunsaturated fatty acids, 1. Linolenic acid, Chem. Phys. Lipids 2: 409.Google Scholar
  508. Nelson, D. R., and Sukkestad, D. R., 1975, Normal and branched alkanes from cast skins of the grasshopper Schistocerca vaga (Scudder), J. Lipid Res. 16: 12.PubMedGoogle Scholar
  509. Nichols, B. W., 1964, Separation of plant phospholipids and glycolipids, in: New Biochemical Separations (A. T. James and L. J. Morris, eds.),p. 321, Van Nostrand Company Ltd, London.Google Scholar
  510. Nichols, B. W., and Moorhouse, R., 1969, The separation, structure and metabolism of monogalactosyl diglyceride species in Chlorella vulgaris, Lipids 4: 311.Google Scholar
  511. Nicolaides, N., and Fu, H. C., 1969, A rapid micro technique for differentiating between iso, anteiso, and other mono-methyl branched fatty chains, Lipids, 4: 83.PubMedGoogle Scholar
  512. Nicolau, C., Dreeskamp, H., and Schulte-Frohline, D., 1974, 13C nuclear magnetic resonance relaxation measurements of a-lecithin-peptide interaction in model membranes, FEBS Lett. 43: 148.Google Scholar
  513. Niehaus, W. G., Jr., and Ryhage, R., 1967, Determination of double bond positions in polyunsaturated fatty acids using combination gas chromatography—mass spectrometry, Tetrahedron. Lett. 1967: 5021.Google Scholar
  514. Nielsen, H., 1971, Metal ion bound to phospholipids after isolation by silicic acid column chromatography, Chem. Phys. Lipids 7: 231.PubMedGoogle Scholar
  515. Noble, A. C. and Nawar, W. W., 1975, Identification of decomposition products from autoxidation of methyl 4,7,10,13,16,19-Docosahexaenoate, J. Am. Oil Chem. Soc. 52: 92.Google Scholar
  516. Noda, M., and Fujiwara, N., 1967, Positional distribution of fatty acids in galactolipids of Artemisia princeps leaves, Biochem. Biophys. Acta 137: 199.PubMedGoogle Scholar
  517. Nutter, L. J., and Privett, O. S., 1966, Phospholipase A. Properties of several snake venom preparations, Lipids 1: 258.PubMedGoogle Scholar
  518. Nyström, E., and Sjövall, J., 1975, Chromatography on lipophilic Sephadex, in: Methods in Enzymology, Vol. 35 Part B ( J. M. Lowenstein, ed.), p. 378, Academic Press, N. Y.Google Scholar
  519. Occolowitz, J. L., Cerimele, B. J., and Brown, P., 1974, Using model ionization efficiency curves to evaluate the methods for determining appearance potentials, Org. Mass Spectrom. 8: 61.Google Scholar
  520. Odham, G., and Stenhagen, E., 1972a, Fatty acids, in: Biochemical Applications of Mass Spectrometry ( G. R. Waller, ed.), p. 211, Wiley Interscience, New York.Google Scholar
  521. Odham, G., and Stenhagen, E., 1972b, Complex lipids, in: Biochemical Applications of Mass Spectrometry, ( G. R. Waller, ed.), Wiley Interscience, New York.Google Scholar
  522. Okuyama, H., and Nojima, S., 1965, Studies on hydrolysis of cardiolipin by snake venom phospholipase A, J. Biochem. (Tokyo) 57: 529.Google Scholar
  523. Oldfield, E., 1972, Gas chromatography—mass spectrometry of biosynthetic H1–H2 hybrid fatty methyl esters, J. Chem. Soc. Chem. Commun. 1972: 719.Google Scholar
  524. Oldfield, E, and Chapman, D., 1971, Carbon-13 pulse fourier transform NMR of lecithins, Biochem. Biophys. Res. Commun. 43: 949.PubMedGoogle Scholar
  525. Oldfield, E., Marsden, J., and Chapman, D., 1971, Proton NMR relaxation study of mobility in lipid water systems, Chem. Phys. Lipids 7: 1.Google Scholar
  526. Oldfield, E., Chapman, D., and Derbyshire, W., 1972, Lipid mobility in Acholeplasma membranes using deuteron magnetic resonance, Chem. Phys. Lipids, 9: 69.PubMedGoogle Scholar
  527. O11ey, J., and Lovern, J. A., 1960, Phospholipid hydrolysis in cod flesh stored at various temperatures, J. Sci. Food Agric. 11: 644.Google Scholar
  528. Olsen, R. W., and Ballou, C. E., 1971, Acyl phosphatidylglycerol. A new phospholipid from Salmonella typhimurium, J. Bio. Chem. 246: 3305.Google Scholar
  529. Opliger, C. E., Heinrich, P. C., and Olson, R. E., 1974, A lipid-soluble antioxidant from polyallomer centrifuge tubes, J. Lipid Res. 15: 281.PubMedGoogle Scholar
  530. Oswald, E. O., Parks, D., Eling, T., and Corbett, B. J., 1974, Characterization of prostaglandins by combined gas—liquid chromatography and chemical ionization mass spectrometry, J. Chromatog. 93: 47.Google Scholar
  531. Palmer, F. B. St. C., 1971, The extraction of acidic phospholipids in organic solvent mixtures containing water, Biochim. Biophys. Acta 231: 134.PubMedGoogle Scholar
  532. Parker, F., and Peterson, N. F., 1965, Quantitative analysis of phospholipids and phospholipid fatty acids from silica gel thin-layer chromatograms, J. Lipid Res. 6: 455.Google Scholar
  533. Pawlowski, N. E., Nixon, J. E., and Sinnhuber, R. O., 1972, Assay of cyclopropenoid lipids by nuclear magnetic resonance, J. Am. Oil Chem. Soc. 49: 387.PubMedGoogle Scholar
  534. Pawlowski, N. E., Eisele, T. A., Lee, D. J., Nixon, J. E. and Sinnhuber, R. 0., 1974, Mass spectra of methyl sterculate and malvalate and 1,2-dialkylcyclopropenes, Chem. Phys. Lipids 13: 164.PubMedGoogle Scholar
  535. Perkins, E. G., and Iwaoka, W. T., 1973, Purification of cyclic fatty acid esters: A GC-MS study, J. Am. Oil Chem. Soc. 50: 44.Google Scholar
  536. Perkins, E. G., and Johnson, P. V., 1969, Pyrolysis—gas chromatography of phosphoglycerides. A mass spectral study of the products, Lipids 4: 301.PubMedGoogle Scholar
  537. Persson, N. O., Lindblom, G., and Lindman, B., 1974, Deuteron and sodium-23 NMR studies of lecithin mesophases, Chem. Phys. Lipids 12: 261.PubMedGoogle Scholar
  538. Petersson, G., 1972a, Mass spectrometry of hydroxy dicarboxylic acids as trimethylsilyl derivatives. Rearrangement fragmentations, Org. Mass Spectrom. 6: 565.Google Scholar
  539. Petersson, G., 1972b, A McLafferty-type rearrangement of a trimethylsilyl group in silylated hydroxy carbonyl compounds, Org. Mass Spectrom 6: 577.Google Scholar
  540. Petrovich, G., Mumford, R., and Kanfer, J. N., 1973, Radiochemical decomposition of N-[’4C]H3-Labeled sphingomyelin (II), Chem. Phys. Lipids 10: 149.Google Scholar
  541. Pfeffer, P. E., and Rothbart, H. L., 1972, PMR spectra of triglycerides. Discrimination of isomers with the aid of a chemical shift reagent, Tetrahedron Lett. 1972: 2533.Google Scholar
  542. Pirkle, W. H., and Beare, S. D., 1969, Optically active solvents in nuclear magnetic resonance spectroscopy. IX. Direct determination of optical purities and correlations of absolute configurations of a-amino acids, J. Am. Chem. Soc. 91: 5150.Google Scholar
  543. Podo, F., Ray, A., and Nemethy, G., 1973, Structure and hydration of nonionic detergent micelles. A high resolution nuclear magnetic resonance study, J. Am. Chem. Soc. 95: 6164.Google Scholar
  544. Pohle, W. D., and Gregory, R. L., 1968, Application of wide-line NMR to analysis of cereal products and fats and oils, J. Am. Oil Chem. Soc. 45: 775.PubMedGoogle Scholar
  545. Polgar, N., 1971, Natural Alkyl-branched long-chain acids, in: Topics in Lipid Chemistry Google Scholar
  546. Vol. 2 (F. D. Gunstone, ed.), p. 207, Logos Press and Elek Science, London.Google Scholar
  547. Powell, R. G., and Smith, C. R., 1966, New acetylenic fatty acids from Acanthosyris spinescens seed oil, Biochemistry 5: 625.PubMedGoogle Scholar
  548. Privett, O. S., 1966a, Determination of the structure of unsaturated fatty acids via degradative methods, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 9 ( R. T. Holman, ed.), p. 91, Pergamon Press, Oxford.Google Scholar
  549. Privett, O. S., 1966b, Preparation of polyunsaturated fatty acids from natural sources, in: Progress in Chemistry of Fats and Other Lipids, Vol 9. ( R. T. Holman, ed.), p. 407, Pergamon Press, Oxford.Google Scholar
  550. Privett, O. S., and Nickell, E. C., 1966, Determination of specific positions of cis and trans double bonds in polyenes, Lipids 1: 98.PubMedGoogle Scholar
  551. Privett, O. S., and Nutter, L. J., 1967, Determination of the structure of lecithins via the formation of acetylated 1,2-diglycerides, Lipids 2: 149.PubMedGoogle Scholar
  552. Privett, O. S., Nadenicek, J. D., Weber, R. P., and Pusch, F., 1963, Petroselinic acid andGoogle Scholar
  553. nonsaponifiable constituents of parsley seed oil, J. Am. Oil Chem. Soc. 40:28.Google Scholar
  554. Purcell, J. E., and Ettre, L. S., 1966, Support coated open tubular columns. II. Application in trace analysis, J. Gas Chrom. 4: 23.Google Scholar
  555. Radford, T., and Dejongh, D. C., 1972, Carbohydrates, in: Biochemical Applications of Mass Spectrometry (G. R. Waller, ed.), p. 313, Wiley, Interscience, Nev, York. Radin, N. S., 1969, Florisil chromatography, in: Methods in Enzymology, Vol. 14 ( J. M. Lowenstein, ed.), p. 268, Academic Press, New York.Google Scholar
  556. Ramachandran, S., Venkata Rao, P., and Cornwell, D. G., 1968, New method for the reductive ozonolysis of double bonds in monoenoic fatty acids, J. Lipid Res. 9: 137.PubMedGoogle Scholar
  557. Randerath, K., 1968, Thin-Layer Chromatography, p. 261, Academic Press, New York. Rao, C. V. N., 1959, Hydrogenation of linolenic acid by hydrazine hydrate, J. Sci. lndustr. Res. 18B: 131.Google Scholar
  558. de Raveglia, I. F., and Ghittoni, N. E., 1971, Purification of ganglioside fractions by column chromatography on Sephadex G-100, J. Chromatog. 58: 288.Google Scholar
  559. Reed, R. I., Robertson, D. H., and Silva, M. E. F., 1973, Criterion for the identification of low resolution mass spectra by retrieval from a data bank, Int. J. Mass Spectrom. Ion Phys. 12: 123.Google Scholar
  560. Reich, H. J., Jautelat, M., Messe, M. T., Weigert, F. J., and Roberts, J. D., 1969, Nuclear magnetic resonance spectroscopy. Carbon-13 spectra of steroids, J. Chem. Soc. 91: 7445.Google Scholar
  561. Reichert, C., Fraas, R. E., and Kiser, R. W., 1970, Kinetic energy release in metastable transitions determined by electric sector variation, Int. J. Mass Spectrom. Ion. Phys. 5: 457.Google Scholar
  562. Renkonen, O., 1967, The analysis of individual molecular species of polar lipids, in: Advances in Lipid Research, Vol. 5 ( R. Paoletti and D. Kritchevsky, eds.), p. 329, Academic Press, New York.Google Scholar
  563. Renkonen, O., and Varo, P., 1967, Thin-layer chromatography of phosphatides and glycolipids, in: Lipid Chromatographic Analysis, Vol. 1 ( G. V. Marinetti, ed.), p. 41, Marcel Dekker, New York.Google Scholar
  564. Richards, R. E., and Schaefer, T., 1958, High resolution hydrogen resonance spectra of trisubstituted benzenes, Molec. Phys. 1: 331.Google Scholar
  565. Roberts, R. N., 1967, Gas chromatography of inositol and glycerol, in: Lipid Chromato- graphic Analysis, Vol 1 ( G. V. Marinetti, ed.), p. 447, Marcel Dekker, New York.Google Scholar
  566. Roberts, J. D., Weigert, F. J., Kroschwitz, J. I., and Reich, H. J., 1970, Nuclear magnetic resonance spectroscopy. Carbon-13 chemical shifts in acyclic and alicyclic alcohols, J. Am. Chem. Soc. 92: 1338.Google Scholar
  567. Robertson, A. J. B., 1972, Field ionization, in: MTP International Review of Science, Vol. 5 ( A. Maccoll, ed.), p. 103, Butterworths, London.Google Scholar
  568. Robinson, J. D., Birdsall, N. J. M., Lee, A. G., and Metcalfe, J. C., 1972, “C and ’H nuclear magnetic resonance relaxation measurements of the lipids of sarcoplasmic reticulum membranes, Biochemistry 11: 2903.Google Scholar
  569. Roehm, J. N., and Privett, O. S., 1969, Improved method for determination of the position of double bonds in polyenoic fatty acid esters, J. Lipid Res. 10: 245.PubMedGoogle Scholar
  570. Roehm, J. N., and Privett, O. S., 1970, Changes in the structure of soybean triglycerides during maturation, Lipids 5: 353.Google Scholar
  571. Rohwedder, W. K., 1971, Field ionization mass spectrometry of long-chain fatty methyl esters, Lipids 6: 906.Google Scholar
  572. Rohwedder, W. K., Bitner, E. D., Peters, H. M., and Dutton, H. J., 1964, Deuterium—hydrogen exchange during the catalytic deuteration of methyl oleate, J. Am. Oil Chem. Soc. 41: 33.Google Scholar
  573. Röllgen, F. W., and Beckey, H. D., 1973, Production of ions with extremely low internal energy, Int. J. Mass Spectrom. Ion Phys. 12: 465.Google Scholar
  574. Rondeau, R. E., and Sievers, R. E., 1971, New superior paramagnetic shift reagents for nuclear magnetic resonance spectral clarification, J. Am. Chem. Soc. 93: 1522.Google Scholar
  575. Roper, R., and Ma, T. S., 1957, Diazomethane as a reagent for microsynthesis, Microchem. J. 1: 245.Google Scholar
  576. Rosenstock, H. M., Wallenstein, M. B., Wahrhaftig, A. L., and Eyring, H., 1952, Absolute rate theory for isolated systems and the mass spectra of polyatomic molecules, Proc. Nat. Acad. Sci. U.S.A. 38: 667.Google Scholar
  577. Roubal, W. T., 1971, Free radicals, malonaldehyde, and protein damage in lipid—protein systems, Lipids, 6: 62.PubMedGoogle Scholar
  578. Rouser, G., 1973, Quantitative liquid column and thin-layer chromatography of lipids and other water insoluble substances, elution selectivity principles, and a graphic method for pattern analysis of chromatographic data, J. Chromatog. Sci. 11: 60.Google Scholar
  579. Rouser, G., Kritchevsky, G., Whatley, M., and Baxter, C. F., 1966, Laboratory contaminants in lipid chemistry. Detection by thin-layer chromatography and infrared spectrophotometry and some procedures minimizing their occurrence, Lipids 1: 107.PubMedGoogle Scholar
  580. Rouser, G., Kritchevsky, G., and Yamamoto, A., 1967, Column chromatographic and associated procedures for separation and determination of phosphatides and glycolipids, in: Lipid Chromatographic Analysis, Vol. 1 ( G. V. Marinetti, ed.), p. 99, Marcel Dekker, New York.Google Scholar
  581. Rouser, G., Kritchevsky G., Yamamoto, A., Simon, G., Galli, C., and Bauman, A. J., 1969, in: Methods in Enzymology, Vol 14 (J. M. Lowenstein, ed.), p. 272, Academic Press, New York.Google Scholar
  582. Ryhage, R., 1973, Integrated gas chromatography—mass spectrometry, Quart. Rev. Biophys. 6: 311.Google Scholar
  583. Ryhage, R., and Stenhagen, E., 1959a, Mass spectrometric studies. I. Methyl esters of saturated normal chain carboxylic acids, Ark. Kemi 13: 523.Google Scholar
  584. Ryhage, R., and Stenhagen, E., 1959b, Mass spectrometric studies. II. Saturated normal long-chain esters of ethanol and higher alcohols, Ark. Kemi 14: 483.Google Scholar
  585. Ryhage, R., and Stenhagen, E., 1959c, Mass spectrometric studies. III. Esters of saturated dibasic acids, Ark. Kemi 14: 497.Google Scholar
  586. Ryhage, R., and Stenhagen, E., 1960a, Mass spectrometric studies. IV. Esters of monomethyl-substituted long-chain carboxylic acids, Ark. Kemi 15: 291.Google Scholar
  587. Ryhage, R., and Stenhagen, E., 1960b, Mass spectrometric studies. V. Methyl esters of monoalkyl-substituted acids with ethyl or longer side chain and methyl esters of di-and polyalkyl-substituted acids, Ark. Kemi 15: 333.Google Scholar
  588. Ryhage, R., and Stenhagen, E., 1960c, Mass spectrometric studies. VI. Methyl esters of normal-chain oxo-, Hydroxy-, methoxy-and epoxy-acids, Ark. Kemi 15: 545.Google Scholar
  589. Ryhage, R., and Stenhagen, E., 1960d, Mass spectrometry in lipid research, J. Lipid Res. 1: 361.PubMedGoogle Scholar
  590. Ryhage, R., and Stenhagen, E., 1963, Mass Spectrometry of long-chain esters, in: Mass Spectrometry of Organic Ions ( F. W. McLafferty, ed.), p. 399, Academic Press, N. Y.Google Scholar
  591. Ryhage, R., and Wikström, S., 1971, Gas chromatography—mass spectrometry, in: Mass Spectrometry: Techniques and Applications ( G. W. A. Milne, ed.), Wiley, Interscience, New York.Google Scholar
  592. Ryhage, R., Ställberg-Stenhagen, S., and Stenhagen, E., 1961, Mass spectrometric studies. VII. Methyl esters of aß-unsaturated long-chain acids. On the structure of C27-phthienoic acid, Ark. Kemi 18: 179.Google Scholar
  593. Sam, D. J., and Simmons, H. E., 1972, Crown polyether chemistry. Potassium permanganate oxidations in benzene, J. d,.n. rhem. 5oc. 94:4024_Google Scholar
  594. Samuelsson, B., and Samuelsson, K., 1969a, Gas—liquid chromatography—mass spectrometry of synthetic ceramides, J. Lipid Res. 10: 41.PubMedGoogle Scholar
  595. Samuelsson, B., and Samuelsson, K., 19696, Separation and identification of ceramides derived from human plasma sphingomyelins, J. Lipid Res. 10: 47.Google Scholar
  596. Samuelsson, K., and Samuelsson, B., 1969c, Gas—liquid chromatography—mass spectrometry of cerebrosides as trimethylsilyl ether derivatives, Biochem. Biophys. Res. Commun. 37: 15.PubMedGoogle Scholar
  597. Sanders, J. K. M., and Williams, D. H., 1970, A shift reagent for use in nuclear magnetic resonance spectroscopy. A first-order spectrum of n-hexanol, Chem. Commun. 1970: 422.Google Scholar
  598. Sanders, J. K. M., and Williams, D. H., 1971, Tris (dipivalomethanato) europium. A paramagnetic shift reagent for use in nuclear magnetic resonance spectroscopy, J. Am. Chem. Soc. 93: 641.Google Scholar
  599. Saunders, R. A., and Williams, A. E., 1963, in: Mass Spectrometry of Organic Ions (F. W. McLafferty, ed.), p. 343, Academic Press, New York.Google Scholar
  600. Scheppele, S. E., Mitchum, R. K., Rudolph, C. J., Jr., Kinneberg, K. F., and Odell, G. V., 1972, Mass spectra of tocopherols, Lipids 7: 297.Google Scholar
  601. Schilling, K., 1961, Der Oerlauf der Hydrieiung Melufach ungesättigter Fettsäureester mit Hydrasin, Fette. Seif. Anstrichan. 63: 421.Google Scholar
  602. Schlenk, H., 1954, Urea inclusion compounds of fatty acids, in: Progress in Chemistry of Fats and Other Lipids, Vol. 2 ( R. T. Holman, W. O. Lundberg and T. Malkin, eds.), p. 243, Pergamon Press, London.Google Scholar
  603. Schlenk, H., and Gellerman, N. J. L., 1961, Esterification of fatty acids with diazomethane on a small scale, J. Am. Oil Chem. Soc. 38: 555.Google Scholar
  604. Schmid, P., 1973, Extraction and purification of lipids. H. Why is chloroform—methanol such a good lipid solvent?, Physiol. Chem. Phys. 5: 141.Google Scholar
  605. Schmid, P. and Hunter, E., 1973, Extraction and purification of lipids. I. Solubility of lipids in biologically important solvents, Physiol. Chem. Phys. 3: 98.Google Scholar
  606. Schmid, P., Hunter, E., and Calvert, J., 1973a, Extraction and purification of lipids. III. Serious limitations of chloroform and chloroform—methanol in lipid investigations. Physiol. Chem. Phys. 5: 151.Google Scholar
  607. Schmid, P., Calvert, J., and Steiner, R., 19736, Extraction and purification of lipids. IV. Alternative binary solvent systems to replace chloroform—methanol in studies on biological membranes, Physiol. Chem. Phys. 5 :157.Google Scholar
  608. Schmitz, F. J., and McDonald, F. J., 1974, Isolation and identification of cerebrosides from the marine sponge Chondrilla micula, J. Lipid Res. 15: 158.Google Scholar
  609. Scholfield, C. R., Jones, E. P., Nowakowska, J., Selke, E., and Dutton, H. J., 1961, Hy- drogenation of linolenate. II. Hydrazine reduction, J. Am. Oil Chem. Soc. 38: 208.Google Scholar
  610. Seelig, J., and Seelig, A., 1974, Deuterium magnetic resonance studies of phospholipid bilayers, Biochem. Biophys. Res. Commun. 57: 406.PubMedGoogle Scholar
  611. Seibl, J., 1967, Zur Kenntnis der metastabilen Übergänge in Massenspektren organischer Verbindungen, He Chim. Acta 50: 263.Google Scholar
  612. Seino, H., Watanabe, S., Nihongi, T., and Nagai, T., 1973, Influences of operating conditions on determination of fatty acid methyl esters by gas chromatography, J. Am. Oil Chem. Soc. 50: 335.PubMedGoogle Scholar
  613. Shadoff, L. A., 1967, Detection of nonexistent molecular ions, Anal. Chem. 39:1902. Shannon, T. W., and McLafferty, F. W., 1966, Identification of gaseous organic ions by the use of “Metastable Peaks”, J. Am. Chem. Soc. 88: 5021.Google Scholar
  614. Shapiro, R. H., 1968, Low voltage behavior of some aromatic fluoro-compounds, Org. Mass Spectrom. 1: 907.Google Scholar
  615. Shapiro, Yu. E., Viktorov, A. K., Volkova, V. I., Barsukov, L. I., Bystrov, V. F., and Bergelson, L. D., 1975, 13C NMR investigation of phospholipid membranes with the aid of shift reagents, Chem. Phys. Lipids 14: 227.Google Scholar
  616. Shaw, N., 1968, The detection of lipids on thin-layer chromatograms with the periodate-schiff reagent, Biochim. Biophys. Acta 164: 435.PubMedGoogle Scholar
  617. Shaw, N., 1970, Bacterial glycolipids, Bacteriol. Rev. 34: 365.PubMedGoogle Scholar
  618. Shoolery, J. N., and Smithson, L. H., 1970, The use of a high resolution NMR spectrometer controlled by a dedicated computer for quantitative analytical chemistry, J. Am. Oil Chem. Soc. 47: 153.PubMedGoogle Scholar
  619. Siakotos, A. N., and Rouser, G., 1965, Analytical separation of nonlipid water-soluble substances and gangliosides from other lipids by dextran gel column chromatography, J. Am. Oil Chem. Soc. 42: 913.PubMedGoogle Scholar
  620. Siddall, T. H., and Stewart, W. E., 1969, Magnetic nonequivalence related to symmetry considerations and restricted molecular motion, in: Progress in Nuclear Magnetic Resonance Spectroscopy ( J. W. Emsley, J. Feeney, and L. H. Sutcliffe, eds.), p. 33, Pergamon, Oxford.Google Scholar
  621. Silbert, L. S., 1962, Fatty peroxides: synthesis, analysis, and reactions, J. Am. Oil Chem. Soc. 39: 480.Google Scholar
  622. Skidmore, W. D., and Entenman, C., 1962, Two-dimensional thin-layer chromatography of rat liver phosphatides, J. Lipid Res. 3: 471.Google Scholar
  623. Skipski, V. P., 1975, Thin-layer chromatography of neutral glycosphingolipids, in: Methods in Enzymology, Vol. 35 ( J. M. Lowenstein, ed.), p. 396, Academic Press, New York.Google Scholar
  624. Skipski, V. P., and Barclay, M., 1969, Thin-layer chromatography of lipids, in: Methods in Enzymology, Vol. 14 (J. M. Lowenstein, ed.), p. 530, Academic Press, New York. Slawson, V., and Mead J. F., 1972, Stability of unsaturated methyl esters of fatty acids on surfaces, J. Lipid Res. 13: 143.Google Scholar
  625. Slawson, V., and Stein, R. A., 1970, Comparative autoxidative susceptibility of fatty esters with 0–6 methylene-interrupted double bonds, Lipids 5: 713.PubMedGoogle Scholar
  626. Slawsom, V., Adamson, A. W., and Mead, J. F., 1973, Autoxidation of polyunsaturated fatty esters on silica, Lipids 8: 129.Google Scholar
  627. Slotboom, A. J., de Haas, G. H., Bonsen, P. P. M., Burbach-Westerhuis, G. T., and Van Deenen, L. L. M., 1970a, Hydrolysis of phosphoglycerides by purified lipase preparations. I. Substrate—positional and stereospecificity, Chem. Phys. Lipids 4: 15.Google Scholar
  628. Slotboom, A. J., de Haas, G. H., Burbach-Westerhuis, G. J., and Van Deenen, L. L. M., 1970b, Hydrolysis of phosphoglycerides by purified lipase preparations. II. Preparation of unsaturated a-monoacyl choline phosphoglycerides, Chem. Phys. Lipids 4: 30.Google Scholar
  629. Smentowski, F. J., and Stipanovic, R. D., 1972, Lanthanide shift reagents as an aid in the NMR analysis of the normal alcohols C6 to C11, J. Am. Oil Chem. Soc. 49: 48.Google Scholar
  630. Smith, I. C. P., 1971, A spin-label study of the organization and fluidity of hydrated phospholipid multibilayers—A model membrane system, Chimia 25: 349.Google Scholar
  631. Smith, W. B., and Deavenport, D. L., 1972, The effect of Eu(dpm)3 on the 13C NMR spectrum of cholesterol, J. Magn. Res. 6: 256.Google Scholar
  632. Smith, G. A., and Williams, D. H., 1969, Deuterium-labeling studies of intramolecular hydrogen transfer reactions and the problem of hydrogen–deuterium rearrangement in mass spectra. The case of isopropyl n-butyl ether, J. Am : Chem. Soc. 1: 5254.Google Scholar
  633. Smolen, J. E., and Shohet, S. B., 1974, Permeability changes induced by peroxidation in liposomes prepared from human erythrocyte lipids, J. Lipid Res. 15: 273.PubMedGoogle Scholar
  634. Snyder, L. R., 1967, Maximum resolution per unit time in liquid-solid adsorption chromatography, separation on columns vs. thin layers, Anal. Chem. 39: 705.Google Scholar
  635. Snyder, W. R., and Law J. H., 1970, A quantitative determination of phosphonate phosphorus in naturally occurring aminophosphonates, Lipids 5: 800.PubMedGoogle Scholar
  636. Snyder, P. D., Krivit, W., and Sweeley, C. C., 1972, Generalized accummulation of neutral glycosphingolipids with GM2 gangloside accumulation in the brain, J. Lipid Res. 13: 128.PubMedGoogle Scholar
  637. Sonneveld, W., 1967, Mass spectrometry of fatty acid methyl esters, Thesis, university of Utrecht.Google Scholar
  638. Sonneveld, W., Bergmann, P., Van Beers, G. J., Kuening, R., and Schogt, J. M., 1962, 3,7,11,15-Tetramethylhexadecanoic acid. A constituent of butterfat, J. Lipid Res. 3: 351.Google Scholar
  639. Sprecher, H. W., Maier, R., Barber, M., and Holman, R. T., 1965, Structure of an optically active allene-containing tetraester triglyceride isolated from the seed oil of Sapium sebiferum, Biochemistry, 4: 1856.Google Scholar
  640. Sprouse, J. F., Jackson, K. M. Raju, T. A., and Testerman, M. K., 1971, A cold electron source suitable for mass spectrometry, Rev. Sci. Instr. 42: 114.Google Scholar
  641. Stahl, E., 1969, Thin Layer Chromatography, Springer-Verlag, New York.Google Scholar
  642. Stearns, E. M., Jr., White, H. B., Jr., and Quackenbush, F. W., 1962, Use of mercuricGoogle Scholar
  643. acetate addition to prepare unsaturated fatty ester concentrates, J. Am. Oil Chem. Soc. 39:61.Google Scholar
  644. Stein, R. A., Slawson, V., and Mead, J. F., 1967, Gas–liquid chromatography of fatty acids and derivatives, in: Lipid Chromatographic Analysis, Vol. I ( G. V. Marinetti, ed.), p. 361, Edward Arnold, London.Google Scholar
  645. Stenhagen, E., 1961, Massenspektrometrie Als Hilfsmittel Bei Der Strukturbestimmung Organischer Verbindungen Besondors Bei Lipiden Und Peptiden, Fresenius Z. Anal. Chem. 181: 462.Google Scholar
  646. Stenhagen, E., 1964, Jetziger Stand der Massenspektrometrie in der organischen Analyse, Fresenius Z. Anal. Chem. 205: 109.Google Scholar
  647. Stevenson, D. P., 1951, Ionization and dissociation by electron impact, Disc. Faraday Soc. 10: 35.Google Scholar
  648. Stevenson, D. P., 1953, Ionization and dissociation by electron impact of normal alkanes, Cc-Ca, Trans. Faraday Soc. 49: 867.Google Scholar
  649. Stoffel, W., and Ahrens, E. H., 1958, Isolation and structure of the C16 unsaturated fatty acids in menhaden body oil, J. Am. Chem. Soc. 80: 6604.Google Scholar
  650. Stoffel, W., and Hanfland, P., 1973, Analysis of amino sugar-containing glycosphingolipids by combined gas—liquid chromatography and mass spectrometry, Hoppe-Seyler’s Z. Phys. Chem. 354: 21.Google Scholar
  651. Stoffel, W., Zierenberg, O., and Tunggal, B. D., 1972, 13C Nuclear magnetic resonance spectroscopic studies on saturated, mono-, di-, and polyunsaturated fatty acids, phospho-, and sphingolipids. Hoppe-Seyler’s Z. Physiol. Chem. 353: 1962.Google Scholar
  652. Stolyhwo, A., and Privett, O. S., 1973, Studies on the analysis of lipid classes by gradient elution adsorption chromatography, J. Chromatog. Sci. 11: 20.Google Scholar
  653. Strecker, A., 1868, Ueber das Lecithin, Ann. Chem. Und. Pharm. 148: 77.Google Scholar
  654. Sun, K. K., and Holman, R. T., 1968, Mass spectrometry of lipid molecules, J. Am. Oil Chem. Soc. 45: 810.Google Scholar
  655. Svec, H. J., and Junk, G. A., 1964, The mass spectra of dipeptides, J. Am. Chem. Soc. 86: 2278.Google Scholar
  656. Svec, H. J., and Junk, G. A., 1967, Electron-impact studies of substituted alkanes, J. Am. Chem. Soc. 89: 790.Google Scholar
  657. Svec, W. A., Harkness, A. L., and Strain, H. H., 1972, Mass spectrometric comparison of ordinary and fully deuterated alpha and beta carotene, Org. Mass Spectrom. 6:843. Svennerholm, L., 1956, The quantitative estimation of cerebrosides in nervous tissue, J. Neurochem. 1: 42.Google Scholar
  658. Svennerholm, L., 1957, Quantitative estimation of sialic acids. II. Colorimetric resorcinol—hydrochloric acid method, Biochim. Biophys. Acta 24: 604.PubMedGoogle Scholar
  659. Svennerholm, L., Mansson, J. E., and Li, Y. T., 1973, Isolation and structural determination of a novel ganglioside, a disialosyl-pentahexosylceramide from human brain, J. Biol. Chem. 248: 740.PubMedGoogle Scholar
  660. Sweeley, C. C., 1969, Chromatography on columns of silicic acid, in: Methods in Enzymology, Vol. 14 ( J. M. Lowenstein, ed.), p. 254, Academic Press, New York.Google Scholar
  661. Sweeley, C. C., and Dawson, G., 1969, Determination of glycosphingolipid structures by mass spectrometry, Biochem. Biophys. Res. Commun. 37: 6.PubMedGoogle Scholar
  662. Sweeley, C. C., and Vance, D. E., 1967, Gas chromatographic estimation of carbohydrates and glycolipids, in: Lipid Chromatographic Analysis, Vol 1 ( G. V. Marinetti, ed.), p. 465, Marcel Dekker, New York.Google Scholar
  663. Sweeley, C. C., and Walker, B., 1964, Determination of carbohydrates in glycolipids and gangliosides by gas chromatography, Anal. Chem. 32: 1461.Google Scholar
  664. Swern, D., and Wineburg, J. P., 1971, NMR chemical shift reagents. Application to structural determination of lipid derivatives, J. Am. Oil Chem. Soc. 48: 372.Google Scholar
  665. Takagi, T., and Craig, B. M., 1964, Hydrogenation of conjugated fatty acids with hydrazine, J. Am. Oil Chem. Soc. 41: 660.Google Scholar
  666. Taketomi, T., and Kawamura, N., 1972, Degradation of Sphingosine bases during acid hydrolysis of sphingomyelin, cerebroside or psychosine, J. Biochem. 72: 189.PubMedGoogle Scholar
  667. Tattrie, N. H., 1959, Positional distribution of saturated and unsaturated fatty acids on egg lecithin, J. Lipid Res. 1: 60.Google Scholar
  668. Teeter, H. M., and Bell, E. W., 1952, tert-Butyl hypochlorite, Org. Synth. 32: 20.Google Scholar
  669. Thiele, J., 1892, Ueber Azodicarbonsaure (Diimidicarbonsaure) Liebigs Ann. Chem. 271: 127.Google Scholar
  670. Tsang, C. W., and Harrison, A. G., 1973, Internal energy effects on metastable characteristics. The structure of C3H7O+ ions, Org. Mass Spectrom. 7: 1377.Google Scholar
  671. Undheim, K., Thorstad, O., and Hvistendahl, G., 1971, Mass spectrometry of onium compounds. IV. Diazonium Salts, Org. Mass. Spectrom. 5: 73.Google Scholar
  672. Uri, N., 1956, Metal ion catalysis and polarity of environment in the aerobic oxidation of unsaturated fatty acids, Nature. Lond. 177: 1177.Google Scholar
  673. Uri, N., 1961, in: Autoxidation and Antioxidants, Vol. 1 (W. O. Lundberg, ed.), p. 94, Wiley, Interscience, New York.Google Scholar
  674. Van Deemter, J. J., Zuiderweg, F. J., and Klinkenberg, A., 1956, Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography, Chem. Eng. Sci. 5: 271.Google Scholar
  675. van Deenen, L. L. M., and de Haas, G. H., 1964, The synthesis of phosphoglycerides and some biochemical applications, Adv. in Lipid Res. 2:167.Google Scholar
  676. van Deenen, L. L. nhosphoglycerides and hospholipasec M., and de Haas, G. H., 1966, Ann. Rev. Biochem. 35: 157Google Scholar
  677. van Golde, L. M. G., and van Deenen, L. L. M., 1966, The effect of dietary fat on the molecular species of lecithin from rat liver, Biochem. Biophys. Acta 125: 496.PubMedGoogle Scholar
  678. van Golde, L. M. G., and van Deenen, L. L. M., 1967, Molecular species of extra-cellular phosphatidylethanolamine from Escherichia 41 Coli, Chem. Phys. Lipids 1: 157.Google Scholar
  679. van Gorkom, M., and Hall, G. E., 1968, Equivalence of nuclei in high-resolution nuclear magnetic resonance spectroscopy, Quart. Rev. 22: 14.Google Scholar
  680. Vaskovsky, V. E., and Kostetsky, E. Y., 1968, Modified spray for the detection of phospholipide on thin-layer chromatograms, J. Lipid Res. 9: 396.PubMedGoogle Scholar
  681. Vaskovsky, V. E., and Suppes, Z. S., 1966, Detection of choline-containing lipids on thin-layer chromatograms, J. Chromatog. 63:455Google Scholar
  682. Vaucheron, M. J., Michel, G., and Guilluy, R., 1969, Localisation des doubles liaisons dans les acides ethyleniques par spectrometrie de masse, Bull. Soc. Chim. Biol. 51: 177.Google Scholar
  683. Vereshchagin, A. G., 1964, The Partition of polar and nonpolar lipids in a reversed-phase chromatographic system, J. Chromatog. 14: 184.Google Scholar
  684. Vioque, E., and Holman, R. T., 1962, Quantitative estimation of esters by thin-layer chromatography, J. Am. Oil Chem. Soc. 39: 63.Google Scholar
  685. Viswanathan, C. V., and Nagabhushanam, A., 1973, Preparative isolation of phosphonolipids by ascending dry-column chromatography, J. Chromatog. 75: 227.Google Scholar
  686. Von Rudloff, E., 1956, Periodate—permanganate oxidations. V. Oxidations of lipids in media containing organic solvents, Canad. J. Chem. 34: 1413.Google Scholar
  687. Vorbeck, M. L., and Marinetti, G. V., 1965, Separation of glycosyl diglycerides from phosphatides using silicic acid column chromatography, J. Lipid Res. 6: 3.PubMedGoogle Scholar
  688. Wagner, H., Hörhammer, L., and Wolff, P., 1961, Dünnschicht—Chromatographie von Phospatiden und Glykolipiden, Biochem. Z. 334: 175.PubMedGoogle Scholar
  689. Wahrhaftig, A. L., 1972, Theory of mass spectra, in: MTP International Review of Science, Vol. 5 (A. Maccoll, ed.), Butterworths, London.Google Scholar
  690. Waku, K., and Nakazawa, Y., 1972, Hydrolyses of 1-O-aldyl-,l-O-alkenyl-, and 1-Acyl-2[1 14C]-linoleoyl-glycero-3-phosphorylcholine by various phospholipases, J. Biochem. (Tokyo) 72: 149.Google Scholar
  691. Waller, G. R., 1972, Biochemical Applications of Mass Spectrometry, Wiley-Interscience, New York.Google Scholar
  692. Walton, T. J., and Kolattukudy, P. E., 1972, Determination of the structure of cutin monomers by a novel depolymerization procedure and combined gas chromatography and mass spectrometry, Biochemistry 11 :1885.Google Scholar
  693. Wangen, L. E., Woodward, W. S., and Isenhour, T. L., 1971, Small computer, Magnetic tape oriented, rapid search system applied to mass spectrometry, Anal. Chem. 43: 1605.Google Scholar
  694. Ward, S. D., 1971, Computerized data acquisition and handling, in: Mass Spectrometry, Vol. 1 ( D. H. Williams, ed.), p. 253, The Chemical Society, London.Google Scholar
  695. Ward, S. D., 1973, Computerized data acquisition and handling, in: Mass Spectrometry, Vol. 2 ( D. H. Williams, ed.), p. 264, The Chemical Society, London.Google Scholar
  696. Ward, R. S., Cooks, R. G., and Williams, D. H., 1969, Substituent effects in mass spectrometry. Mass spectra of substituted phenyl benzyl ethers, J. Am. Chem. Soc. 91: 2727.Google Scholar
  697. Warren, J. W., 1950, Measurement of appearance potentials of ions produced by electron impact, using a mass spectrometer, Nature 165: 810.PubMedGoogle Scholar
  698. Wasson, J. R., and Johnson, D. K., 1974, Nuclear magnetic resonance spectrometry, Anal. Chem. 46: 314R.Google Scholar
  699. Wedmid, Y., and Litchfield, C., 1975, Positional analysis of iso-valeroyl triglycerides using proton magnetic resonance with eu(fod)3 and pr(fod)3 shift reagents. I. Model compounds, Lipids 10: 145.PubMedGoogle Scholar
  700. Weiss, A., 1974, Molecular addition compounds and nuclear quadrupole resonance, in: Advances in Nuclear Quadrupole Resonance, Vol. I ( J. A. S. Smith, ed.), p. 1, Heyden, London.Google Scholar
  701. Wells, M. A., and Dittmer, J. C., 1963, The use of Sephadex for the removal of nonlipid contaminants from lipid extracts, Biochemistry, 2: 1259.PubMedGoogle Scholar
  702. Wells, M. A., and Dittmer, J. C., 1965, The quantitative extraction and analysis of brain polyphosphoinositides, Biochemistry 4: 2459.Google Scholar
  703. Wendt, T. G., and McCloskey, J. A., 1970, Mass spectrometry of perdeuterated molecules of biological origin, fatty acid esters from Scenedesmus obliquus, Biochemistry 9: 4854.Google Scholar
  704. Wenkert, E., Cochran, D. W., Hagaman, E. W., Burton Lewis, R., and Schell, F. M., 1971, Carbon-13 nuclear magnetic resonance spectroscopy with the aid of a paramagnetic shift reagent, J. Am. Chem. Soc. 93: 6271.Google Scholar
  705. Westley, J. W., and Halpern, B., 1968, The use of (—)-menthyl chloroformate in the optical analysis of asymmetric amino and hydroxy compounds by gas chromatography, J. Org. Chem. 33: 3978.Google Scholar
  706. White, R. W., and Black, M. E., 1975, Assay of myo-inositol using the yeast Kloeckera apiculata (K. brevis), in: Some Methods for Microbiological Assay ( R. G. Board and D. W. Lovelock, eds.), Academic Press, New York.Google Scholar
  707. Whitesides, G. M., and Lewis, D. W., 1970, Tris-[3- (tert-butylhydroxy-methylene)-dcamphoratoleuropium(III), A reagent for determining enantiomeric purity, J. Am. Chem. Soc. 92: 6979.Google Scholar
  708. Whitesides, G. M., and Lewis, D. W., 1971, The determination of enantiomeric purity using chiral lanthanide shift reagents, J. Am. Chen. Soc. 93: 5914.Google Scholar
  709. Wilkinson, S. G., 1974, Artifacts produced by acidic hydrolysis of lipids containing 3-hydroxyalkanoic acids, J. Lipid Res. 15: 181.PubMedGoogle Scholar
  710. Williams, D. H., and Cooks, R. G., 1968, The role of “frequency factors” in determining the difference between low and high voltage mass spectra, Chem. Commun. 12: 663.Google Scholar
  711. Willner, D., 1965, Separation of fatty acid esters on acid-treated Florisil impregnated with silver nitrate, Chem. Ind. 1965: 1839.Google Scholar
  712. Wilson, J. M., 1971, Alternative methods of ionization and analysis, in: Mass Spectrometry, Vol 1, p. 1, The Chemical Society, London.Google Scholar
  713. Wilson, J. M., 1573, Alternative methods of ionization and analysis, in: Mass Spectrometry, Vol. 2, p. 1, The Chemical Society, London.Google Scholar
  714. Wilson, J. M., 1975, Alternative methods of ionization and analysis, in: Mass Spectrometry, Vol. 3, p. 86, The Chemical Society, London.Google Scholar
  715. Windeler, A. S., and Feldman, G. L., 1969, Silver acetate for stabilizing methyl galactosides after methanolysis of glycolipids, Lipids, 4: 167.PubMedGoogle Scholar
  716. Wineburg, J. P., and Swern, D., 1972, NMR chemical shift reagents in structural determination of lipid derivatives. II. Methyl petroselinate and methyl oleate, J. Am. Oil Chem. Soc. 49: 267.Google Scholar
  717. Wineburg, J. P., and Swern, D., 1973, NMR chemical shift reagents in structural determination of lipid derivatives. III. Methyl ricinoleate and methyl 12-hydroxystearate, J. Am. Oil Chem. Soc. 50: 142.PubMedGoogle Scholar
  718. Wineburg, J. P., and Swern, D., 1974, NMR chemical shift reagents in structural determination of lipid derivatives. IV. Methyl cis and trans 9,10 epoxystearate and methyl erythro and timeo 9,10, dihydroxystearate, J. Am. Oil Chem. Soc. 51: 528.Google Scholar
  719. Wood, G. W., and Lau, P. Y., 1974, Analysis of intact phospholipids by field desorption mass spectrometry, Biomed. Mass Spectrom. 1: 154.PubMedGoogle Scholar
  720. Wood, R., and Snyder, F., 1966, Gas—liquid chromatographic analysis of long-chain isomeric glyceryl monoethers, Lipids, 1: 62.PubMedGoogle Scholar
  721. Wood, R., and Snyder, F., 1968, Quantitative determination of alk-1-enyl and alkylglyceryl ethers in neutral lipids and phospholipids, Lipids, 3: 129.PubMedGoogle Scholar
  722. Woodford, F. P., and Van Gent, C. M., 1960, Gas—liquid chromatography of fatty acid methyl esters. The “carbon-number” as a parameter for comparison of columns, J. Lipid Res. 1: 188.Google Scholar
  723. Wren, J. J., 1960, Chromatography of lipids on silicic acid, J. Chromatog. 4: 173.Google Scholar
  724. Wurster, C. F., Jr., Copenhaver, J. H., Jr., and Schafer, P. R., 1963, Separation of the methyl esters of oleic, linoleic, and linolenic acids by column chromatography using a cation-exchange resin containing silver ions, J. Am. Oil Chem. Soc. 40: 513.Google Scholar
  725. Wurster, C. F., and Copenhaver, J. H., 1966, Thin-layer chromatographic separation of dimethylphosphatidates derived from lecithins, Lipids 1: 422.PubMedGoogle Scholar
  726. Wuthier, R. E., 1966, Purification of lipids from nonlipid contaminants on Sephadex bead columns,.1. Lipid Res. 7: 558.Google Scholar
  727. Yabuuchi, H., and O’Brien, J. S., 1968, Positional distribution of fatty acids in glycerophosphatides of bovine gray matter, J. Lipid Res. 9: 65.PubMedGoogle Scholar
  728. Yeo, A. N. H., and Williams, D. H., 1971, The variation of metastable ion abundance ratios with internal energy in the mass spectrometer, J. Am. Chem. Soc. 93: 395.Google Scholar
  729. Zeman, A., and Scharmann, H., 1972, Massenspektrometrie von Lipiden (Eine Zusammenfassung) I. Fette Seifen Anstrichm. 74: 509.Google Scholar
  730. Zeman, A., and Scharmann, H., 1973a, Massenspektrometrie von Lipiden (Eine Zusammenfassung) II., Fette Seif. Anstrichm. 75: 32.Google Scholar
  731. Zeman, A., and Scharmann, H., 19736, Massenspektrometrie von Lipiden (Eine Zusammenfassung) III., Fette Seif. Anstrichm. 75:170.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • R. A. Klein
    • 1
  • P. Kemp
    • 2
  1. 1.Medical Research Council, Molteno InstituteUniversity of CambridgeCambridgeEngland
  2. 2.Agricultural Research CouncilInstitute of Animal PhysiologyCambridgeEngland

Personalised recommendations