The Use of Organic Solvents in Membrane Research

  • Peter Zahler
  • Verena Niggli


Biological membranes are characterized by the fact that most of the constituents interact by polar as well as by apolar types of binding. The typical laminar bilayer structure is mostly the result of interaction of the amphipathic membrane components (lipids) with water. Therefore, in any systematic treatment of the binding between membrane components, water, with its unique structural and entropic behavior, has to be taken into consideration.


Critical Micelle Concentration Erythrocyte Membrane Dielectric Constant Ehrlich Ascites Tumor Cell Proteolipid Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, H. C., Burton, R. M., Fishman, M. A., Mitchell, R. F., and Prensky, A. L., 1972, Partial characterization of a new myelin protein component, J. Neurochem. 19: 2083.PubMedGoogle Scholar
  2. Anderson, R. E., 1972, Solubility of rod outer segment protein in acidic organic solvents, Biochemistry 11: 1224.PubMedGoogle Scholar
  3. Baer, E., 1951, Synthesis of enantiomeric a-phosphatidic acids, J. Biol. Chem. 189: 235.PubMedGoogle Scholar
  4. Baer, E., and Kates, M., 1950 Synthesis of enantiomeric a-lecithins, J. Am. Chem. Soc. 72: 942.Google Scholar
  5. Bakerman, S., and Wasemiller, G., 1967, Studies on structural units of human erythrocyte membrane. I. Separation, isolation, and partial cheracterization, Biochemistry 6: 1100.PubMedGoogle Scholar
  6. Barrantes, F. J., La Torre, J. L., Llorrente de Carlin, M. C., and de Robertis, E., 1972, Studies on proteolipid proteins from cerebral cortex. I. Preparation and some propertiès, Biochim. Biophys. Acta 263: 368.Google Scholar
  7. Beilstein Institut für Literatur der organischen Chemie, 1965, Beilstein’s Handbuch, 3. Ergänzungswerk, Springer Verlag, Berlin, Göttingen, Heidelberg.Google Scholar
  8. Bernard, B., de, Pugliarello, M. C., Sandri, G., Sottocasa, G. L., and Vittur, F., 1971, Glycoprotein components, sialic acid and hexosamines bound to inner and outer mitochondrial membranes, FEBS-Lett. 12: 125.Google Scholar
  9. Bjerve, K. S., Daae, L. N. W., and Bremer, J., 1974, The selective loss of lysophospholipids in some commonly used lipid-extraction procedures, Anal. Biochem. 58: 238.PubMedGoogle Scholar
  10. Bligh, E. G., and Dyer, W. J., 1959, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol. 37: 911.PubMedGoogle Scholar
  11. Bloor, W. R., 1914, A method for the determination of fat in small amounts of blood, J. Biol. Chem. 17: 377.Google Scholar
  12. Bloor, W. R., 1915, A method for the determination of “lecithin” in small amounts of blood, J. Biol. Chem. 22: 133.Google Scholar
  13. Blumenfeld, O., 1968, The proteins of the erythrocyte membrane obtained by solubilization with aqueous pyridine solution, Biochemical and Biophysical Research Communications 30: 200.PubMedGoogle Scholar
  14. Branton, D., and Park, R. B., 1967, Subunits in chloroplast lamellae, J. Ultrastruct. Res. 19: 283.PubMedGoogle Scholar
  15. Bruckdorfer, K. R., Edwards, P. A., and Green, C., 1968, Properties of aqueous dispersions of phospholipid and cholesterol, Eur. J. Biochem. 4: 506.PubMedGoogle Scholar
  16. Capaldi, R. A., 1973, Properties of the major glycoprotein of the beef erythrocyte membrane, Biochim, Biophys. Acta 311: 386.Google Scholar
  17. Chapman, D., and Salsbury, N. J., 1970, NMR Studies of lipids, lipoproteins, and cell membranes, in: Recent Progress in Surface Science ( J. F. Danielli, A. C. Riddiford, M. D. Rosenberg, eds.), Vol. 3, pp. 121–168, Academic Press, London and New York.Google Scholar
  18. Chapman, D., and Wallach, D. F. H., 1968, Recent physical studies of phospholipids and natural membranes, in: Biological Membranes ( D. Chapman, ed.), pp. 125–202, Academic Press, London and New York.Google Scholar
  19. Chapman, D., Kamat, V. B., and Levene, R. J., 1968, Infrared spectra and the chain organization of erythrocyte membranes, Science 160: 314.PubMedGoogle Scholar
  20. Colacicco, G., Hendrickson, H., and Joffe, S., 1972, Surface properties of membrane systems: Apoprotein of the Folch-Lees proteolipid from beef-brain myelin, Proc. Natl. Acad. Sci. U.S.A. 69: 1848.PubMedGoogle Scholar
  21. Colacicco, G., Hendrickson, H., and Joffe, S., 1972, Surface properties of membrane systems: Apoprotein of the Folch-Lees proteolipid from beef-brain myelin, Proc. Natl. Acad. Sci. U.S.A. 69: 1848.PubMedGoogle Scholar
  22. Curtis, P. J., 1969b, Gel-filtration of mitochondrial membrane proteins dissolved in chloroform-methanol, Biochim. Biophys. Acta 194: 513.PubMedGoogle Scholar
  23. Curtis, P. J., 1972, Physical characteristics of mitochondrial membrane protein dissolved in chloroform-methanol, Biochim. Biophys. Acta 255: 833.PubMedGoogle Scholar
  24. Das, M. L., Haak, E. D., and Crane, F. L., 1965, Proteolipids IV: Formation of complexes between cytochrome c and purified phospholipids, Biochemistry 4: 859.PubMedGoogle Scholar
  25. Das, M. L., Haak, E. D., and Crane, F. L., 1965, Proteolipids IV: Formation of complexes between cytochrome c and purified phospholipids, Biochemistry 4: 859.PubMedGoogle Scholar
  26. Demus, H., and Mehl, E., 1970, Identification of water-insoluble membrane proteins by immuno-electrophoresis in a solubilizing urea-triton solvent, Biochim. Biophys. Acta 211: 148.Google Scholar
  27. Deuel, H. J., Jr., 1951, The Lipids, Vol. 1, Interscience Publishers, Inc., New York.Google Scholar
  28. Doty, P., 1959, Configurations of biologically important macromolecules in solution, in: Biophysical Science (J. L. Oncley, ed.), pp. 107–117, Wiley, New York.Google Scholar
  29. Duve, G., Fuchs, O., and Overbeck, H., 1974, Lösemittel Hoechst, Hoechst AG, Frankfurt (Main) 80.Google Scholar
  30. Eicke, H. F., and Christen, H., 1974, On the stability of micelles in apolar media, J. Colloid and Interface Sci. 46: 417.Google Scholar
  31. Eisenberg, D., and Kauzmann, W., 1969, The Structure and Properties of Water, Clarendon Press, Oxford.Google Scholar
  32. Evans, R. J., Bandemer, S. L., Davidson, J. A., Heinlein, K., and Vaghefi, S. S., 1968, Binding of lipid to protein in the low-density lipoprotein from the hen’s egg, Biochim. Biophys. Acta 164: 566.PubMedGoogle Scholar
  33. Fleischer, S., Fleischer, B., and Stoeckenius, W., 1967, Fine structure of lipid-depleted mitochondria, J. Cell Biol. 32: 193.PubMedGoogle Scholar
  34. Fletcher, M. A., and Woolfolk, B. J., 1972, Immunochemical studies of infectious mononucleosis. II. SDS gel electrophoresis of membrane glycoprotein antigens, Biochim. Biophys. Acta 278: 163.PubMedGoogle Scholar
  35. Folch, J., and Lees, M., 1951, Proteolipides, a new type of tissue lipoproteins, J. Biol. Chem. 191: 807.PubMedGoogle Scholar
  36. Folch, J., Lees, M., and Sloane Stanley, H., 1957, A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem. 226: 497.PubMedGoogle Scholar
  37. Fraenkel-Conrat, H., 1957, Degradation of tobacco mosaic virus with acetic acid, Virology 4: 1.PubMedGoogle Scholar
  38. Gagnon, J., Finch, P. R., Wood, D. D., and Moscarello, M. A., 1971, Isolation of a highly purified myelin protein, Biochemistry 10: 4756.PubMedGoogle Scholar
  39. Gier, J., de, Mulder, I., and van Deenen, L. L. M., 1961, On the specific lipid composition of red cell membranes, Naturwiss 48: 54.Google Scholar
  40. Gitler, C., and Montai, M., 1972, Formation of decane-soluble proteolipids: influence of monovalent and divalent cations. FEBS-Lett. 28: 329.PubMedGoogle Scholar
  41. Green, D. E., and Fleischer, S., 1964, Role of lipid in mitochondrial function, in: Metabolism and Physiological Significante of Lipids ( R. M. C. Dawson and D. N. Rhodes, eds.), pp. 581–618, Wiley, London.Google Scholar
  42. Gurd, J. W., Evans, W. H., and Perkins, H. R., 1972a, Chemical characterization of the proteins and glycoproteins of mouse liver plasma membranes solubilized by sequential extraction with aqueous and organic solvents, Biochem. J. 126: 459.PubMedGoogle Scholar
  43. Gurd, J. W., Evans, W. H., and Perkins, H. R., 1972b, The distribution of surface antigens during fractionation of mouse liver plasma membranes, Biochem. J. 130: 271.PubMedGoogle Scholar
  44. Gurd, J. W., Evans, W. H., and Perkins, H. R., 1973, Immunochemical characterization of proteins from mouse liver plasma membranes, Biochem. J. 135: 827.PubMedGoogle Scholar
  45. Hamaguchi, H., and Cleve, H., 1972, Solubilization and comparative analysis of mamma- lian erythrocyte membrane glycoproteins. Biochem. Biophys. Res. Comm. 47: 459.PubMedGoogle Scholar
  46. Haven, F. L., and Levy, S. R., 1941, The occurrence and rate of turnover of tumor sphingomyelin, J. Biol. Chem. 141: 417.Google Scholar
  47. Hendrickson, H., Joffe, S., and Davidson, D., 1972, Isolation of the Folch—Lees proteo-lipid apoprotein fraction from bovine brain myelin by a procedure involving rapid water partitioning using Sephadex LH-20, J. Neurochem. 19: 2933.Google Scholar
  48. Herskovits, T. T., Jaillet, H., and Gadegbetcu, B., 1970, On the structural stability and solvent denaturation of proteins, J. Biol. Chem. 245: 2588.PubMedGoogle Scholar
  49. Higashi, Y., Siewert, G., and Strominger, J. L., 1970, Biosynthesis of the peptidoglycan of bacterial cell walls, J. Biol. Chem. 245: 3683.PubMedGoogle Scholar
  50. Hirsch, E., and Fuoss, R. M., 1960, Electrolyte—solvent interaction. VIII. Tetrabutylammonium salts in nitrobenzene carbon tetra-chloride mixtures at 25°C, J. Am. Chem. Soc. 82: 1018.Google Scholar
  51. Hörtnagl, H., Winkler, H., and Schöpf, J. A. L., 1971, Membranes of chromaffin granules, Biochem. J. 122: 299.PubMedGoogle Scholar
  52. Howe, C., and Lee, L. T., 1969, Immunochemical study of hemoglobin-free human erythrocyte membranes. J. Immunol. 102: 573.PubMedGoogle Scholar
  53. Janson, J. P. M., Kunst, M., Rip, A., and Bordewijk, P., 1972, Aggregate size and dielectric behavior of phosphatidyl—choline in nonpolar solvents, Chem. Phys. Lipids 9: 147.PubMedGoogle Scholar
  54. Jencks, W. P., 1969, Catalysis in Chemistry and Enzymology, McGraw-Hill Book Company, New York.Google Scholar
  55. Kai, M., and Hawthorne, J. N., 1966, Incoporation of injected [32P] phospate into the phosphoinositides of subcellular fractions from young rat brain, Biochem. J. 98: 62.PubMedGoogle Scholar
  56. Kauzmann, W., 1959, Some factors in the interpetation of protein denaturation, in: Advances in Protein Chemistry, Vol. 14 (C. B. Anfinsen, M. L. Anson, K. Bailey, J. T. Edsall, eds.), pp. 1–63, Academic Press, New York.Google Scholar
  57. Klenk, E., 1927, Ueber die Cerebroside des Gehirns, Hoppe-Seyler’s Zschr. Physiol. Chem. 166: 268.Google Scholar
  58. Kóscielak, J., Piasek, A., Górniak, H., Gardas, A., and Gregor, A., 1973, Structures of fucose-containing glycolipids with H and B blood group activity and of sialic acid and glucosamine-containing glycolipid of human erythrocyte membrane, Eur. J. Biochem. 37: 214.PubMedGoogle Scholar
  59. Kramer, R., Schlatter, Ch., and Zahler, P., 1972, Preferential binding of sphingomyelin by membrane proteins of the sheep red cell, Biochim. Biophys. Acta 282: 146.PubMedGoogle Scholar
  60. Kramer, R., Jungi, B., and Zahler, Y., 1974, Some characteristics of a phospholipase A2 from sheep red cell membranes, Biochim. Biophys. Acta 373: 404.PubMedGoogle Scholar
  61. Landolt and Börnstein, 1960, Zahlenwerte and Funktionen, Springer Verlag, Heidelberg. Lenaz, G., Parenti-Castelli, G., Sechi, A. M., and Masotti, L., 1972, Lipid—protein interactions in mitochondria, Arch. Biochem. Biophys. 148: 391.Google Scholar
  62. Lewin, S., 1974, Displacement of Water and its Control of Biochemical Reactions, Academic Press, New York.Google Scholar
  63. Lovern, J. A., and Olley, J., 1953, The lipids of fish. 2. The acetone-soluble lipids of the flesh of the haddock, Biochem. J. 54: 128.PubMedGoogle Scholar
  64. Luzzati, V., 1968, X-ray diffraction studies of lipid—water systems, in: Biological Membranes ( D. Chapman, ed.), pp. 71–124, Academic Press, New York.Google Scholar
  65. Maddy, A. H., 1966, The properties of the plasma membrane of ox erythrocytes, Biochim. Biophys. Acta 117: 193.PubMedGoogle Scholar
  66. Maddy, A. H., 1972, The isolation of erythrocyte membrane proteins in aqueous media, in Passive Permeability of Cell Membranes ( F. Kreuzer and J. F. G. Slegers, eds.), pp. 181–192, Plenum Press, New York.Google Scholar
  67. Maddy, A. H., and Dunn, M. J., 1973, The interpretation of molecular weight on membrane proteins, in Protides of the Biological Fluids ( H. Peeters, ed.), pp. 21–26, Perga-mon Press, Oxford.Google Scholar
  68. Maddy, A. H., Dunn, M. J., and Kelly, P. G., 1972, The characterization of membrane proteins by centrifugation and gel electrophoresis, a comparison of proteins prepared by different methods, Biochim. Biophys. Acta 288: 263.PubMedGoogle Scholar
  69. Marchesi, V. T., and Andrews, E. P., 1971, Glycoproteins: Isolation from cell membranes with lithium diiodosalicylate, Science 174: 1247.PubMedGoogle Scholar
  70. Martonosi, A., and Halpin, R. A., 1972, Sarcoplasmic reticulum. XVII. The turnover of proteins and phospholipids in sarcoplasmic reticulum membranes, Arch. Biochem. Biophys. 152: 440.PubMedGoogle Scholar
  71. Menke, W., and Ruppel, H. G., 1971, Molecular weight, size, and shape of thylakoidmembrane proteins, Z. Naturforsch. 266: 825.Google Scholar
  72. Metcalfe, J. C., Metcalfe, S. M., and Engelman, D. M., 1971, Structural comparisons of native and reaggregated membranes from mycoplasma Laidlawii and erythrocytes by X-ray diffraction and NMR techniques, Biochim. Biophys. Acta 241: 412.PubMedGoogle Scholar
  73. Meyer, H. W., and Winkelmann, H., 1970, The representation of lipids by freeze-etching technique and its relations to the structure of biological membranes, Exp. Pathol. 4: 47.Google Scholar
  74. Miyajima, N., Tomikawa, M., Kawasaki, T., and Yamashina, I., 1969, Chemical composition of membranous fractions of rat liver microsomes, J. Biochem. 66: 711.PubMedGoogle Scholar
  75. Morton, R. K., 1950, Separation and purification of enzymes associated with insoluble particles, Nature 166: 1092.PubMedGoogle Scholar
  76. Morton, R. K., 1955, Methods of extraction of enzymes from animal tissues, in Methods of Enzymology (S. P. Colowick and N. O. Kaplan, eds.), pp. 25–51, Academic Press, New York.Google Scholar
  77. Newkirk, J. D., and Waite, M., 1973, Phospholipid hydrolysis by phospholipases Al and Az in plasma membranes and microsomes of rat liver, Biochim. Biophys. Acta 298: 562.PubMedGoogle Scholar
  78. Page, I. H., and Rudy, H., 1930, Ueber die Fettsäureester des Cholesterins, Biochem. Zeitschrift 220: 304.Google Scholar
  79. Palmer, F. B. St. C., 1971, The extraction of acidic phospholipids in organic solvent mixtures containing water, Biochim. Biophys. Acta 231: 134.PubMedGoogle Scholar
  80. Parenti-Castelli, G., Bertoli, E., Sechi, A. M., Silvestrini, M. G., and Lenaz, G., 1974, Effect of soluble and membrane proteins upon diethyl ether extraction of aqueous phospholipid dispersions, Lipids 9: 221.PubMedGoogle Scholar
  81. Parpart, A. K., and Ballentine, R., 1952, Molecular anatomy of the red cell plasma membrane, in Modern Trends in Physiology and Biochemistry ( E. S. G. Barron, ed.), p. 135, Academic Press, New York.Google Scholar
  82. Poulik, M. D., 1968, Preparation, isolation, and characterization of soluble red cell membrane proteins, in Metabolism and Membrane Permeability of Erythrocytes and Thrombocytes ( E. Deutsch, E. Gerlach, K. Moser, eds), pp. 360–376, Georg Thieme Verlag, Stuttgart.Google Scholar
  83. Poulik, M. D., and Lauf, P. K., 1965, Heterogeneity of watersoluble structural components of human red cell membrane, Nature 208: 874.PubMedGoogle Scholar
  84. Redman, M. C., 1972, Proteolipid involvement in human erythrocyte membrane function, Biochim. Biophys. Acta 282: 123.PubMedGoogle Scholar
  85. Reed, C. F., Swisher, S. N., Marinetti, G. V., and Eden, E. G., 1960, Studies of the lipids of the erythrocyte, J. Lab. Clin. Med. 56: 281.PubMedGoogle Scholar
  86. Rega, F. A., Weed, R. I., Reed, C. F., Berg, G. G., and Rothstein, A., 1967, Changes in the properties of human erythrocyte membrane protein after solubilization by butanol extraction, Biochim. Biophys. Acta 147: 297.PubMedGoogle Scholar
  87. Renkonen, O., Kosunen, T. U., and Renkonen, O. V., 1963, Extraction of serum inositides and other phosphatides, Ann. Med. Exp. Biol. Fenniae 41: 375.Google Scholar
  88. Rewald, B., 1937, The determination of oils and phosphatides in organic raw material, J. Soc. Chem. Indust. 56: 77T.Google Scholar
  89. Roelofsen, B., de Gier, J., and van Deenen, L. L. M., 1964, Binding of lipids in the red cell membrane, J. Cell. Comp. Physiol. 63: 233.Google Scholar
  90. Rose, H. G., and Oklander, M., 1965, Improved procedure for the extraction of lipids from human erythrocytes, J. Lipid Res. 6: 428.PubMedGoogle Scholar
  91. Rosenberg, S. A., and Guidotti, G. 1969, Fractionation of the protein components of human erythrocyte membranes, J. Biol. Chem. 244: 5118.PubMedGoogle Scholar
  92. Rottem, S., Hasin, M., and Razin, S., 1973, Binding of proteins to mycoplasma membranes, Biochim. Biophys. Acta 298: 876.PubMedGoogle Scholar
  93. Rouser, G., Kritchevsky, G., and Yamamoto, A., 1967, Column chromatographic and associated procedures for separation and determination of phosphatides and glycolipids, in Lipid Chromatographic Analysis ( G. V. Marinetti, ed.), Vol. 1, pp. 99–162, Marcel Dekker Inc., New York.Google Scholar
  94. Sarzala, M. G., Zubrzycka, E., and Drabikowski, W., 1974, Characterization of the constituents of sarcoplasmic reticulum membrane, in: Calcium Binding Proteins ( W. Drabikowski, H. Strzelecka-Golaszewska, E. Carafoli, eds.), pp. 315–346, Polish Scientific Publishers, Warszawa/Elsevier Scientific Publishing Company, Amsterdam.Google Scholar
  95. Schmid, P., 1973, Extraction and purification of lipids. II. Why is chloroform-methanol such a good lipid solvent, Physiol. Chem. Phys. 5: 141.Google Scholar
  96. Schmid, P., and Hunter, E., 1971, Extraction and purification of lipids. I. Solubility of lipids in biologically important solvents, Physiol. Chem. Phys. 3: 98.Google Scholar
  97. Schmid, P., Hunter, E., and Calvert, J., 1973a, Extraction and purification of lipids. III. Serious limitations of chloroform and chloroform-methanol in lipid investigations, Physiol. Chem. Phys. 5: 151.Google Scholar
  98. Schmid, P., Calvert, J., and Steiner, R., 1973b, Extraction and purification of lipids. IV. Alternative binary solvent systems to replace chloroform-methanol in studies on biological membranes, Physiol. Chem. Phys. 5: 157.Google Scholar
  99. Schnaitman, C. A., 1969, Comparison of rat liver mitochondrial and microsomal membrane proteins, Proc. Natl. Acad. Sci. U.S.A. 63: 412.PubMedGoogle Scholar
  100. Schneider, H., and Smith, I. C. P., 1970, A study of the structural integrity of spin-labelled proteins in some fractions of human erythrocyte ghosts, Biochim. Biophys. Acta 219: 73.PubMedGoogle Scholar
  101. Schubert, D., Poensgen, J., and Werner, G., 1972, Association of protein fractions and lipids from human erythrocyte membranes, I, Hoppe-Seyler’s Zschr. physiol. Chem. 353: 1034.Google Scholar
  102. Sherman, G., and Folch, J., 1970, Rotary dispersion and circular dichroism of brain “proteolipid” protein, J. Neurochem. 17: 597.PubMedGoogle Scholar
  103. Singer, S. J., 1962, The properties of proteins in nonaqueous solvents, in: Advances in Protein Chemistry (C. B. Anfinsen, M. L. Anson, K. Bailey, J. T. Edsall, eds.), Vol. 17, pp. 1–68, Academic Press, New York.Google Scholar
  104. Sober, H. A., 1970, Handbook of Biochemistry, The Chemical Rubber Co., Ohio.Google Scholar
  105. Stanley, P. E., Jennings, A. C., and Nicholas, D. J. D., 1968, Ultracentrifuge studies of proteins in mixtures of phenol, acetic acid, and water, Phytochem. 7: 1109.Google Scholar
  106. Stecker, P. G., 1968 The Merck Index, Merck & Co, Inc., U.S.A.Google Scholar
  107. Storelli, C., Vögeli, H., and Semenza, G., 1972, Reconstitution of a sucrose-mediated sugar transport system in lipid membranes, FEBS-Lett. 24: 287.PubMedGoogle Scholar
  108. Takayama, K., McLennan, D. H., Tsagoloff, A., and Stoner, C. D., 1964, Studies on the electron transfer system, Arch. Biochem. Biophys. 114: 223.Google Scholar
  109. Uhlenbruck, G., 1961, Blutgruppen-spezifische Substanzen aus menschlichen Erythrozyten, Hippokrates 32: 537.PubMedGoogle Scholar
  110. Vanderkooj, G., 1974, Organization of proteins in membranes with special reference to the cytochrome oxidase system, Biochim. Biophys. Acta 344: 307.Google Scholar
  111. Wallach, D. F. H., and Zahler, P. H., 1966, Protein conformations in cellular membranes, Proc. Natl. Acad. Sci. U.S.A. 56: 1552.PubMedGoogle Scholar
  112. Weast, R. C., 1971–1972, Handbook of Chemistry and Physics,The Chemical Rubber Co., Ohio.Google Scholar
  113. Weber, P., 1963, Ueber gelöstes lamellares Strukturproteid aus Chloroplasten, Z. Naturforsch. 18b: 1105.Google Scholar
  114. Westphal, O., Luderitz, O., and Bister, F., 1952, Ueber die Extraktion von Bakterien mit Phenol/Wasser, Z. Naturforsch. 7b: 148.Google Scholar
  115. Work, T. S., and Work, E., 1972, Laboratory Techniques in Biochemistry and Molecular Biology, North Holland/American Elsevier, Amsterdam, London, and New York.Google Scholar
  116. Yonath, J., 1975, The effect of alcohols on micelle formation and on detergent—protein association, J. Colloid and Interface Sci. 50: 338.Google Scholar
  117. Zahler, P., 1972, Lipid binding of membrane proteins, in: Passive Permeability of Cell Membranes ( F. Kreuzer, J. F. G. Slegers, eds.), pp. 193–195, Plenum Press, New York.Google Scholar
  118. Zahler, P. 1974, Association and reconstitution of membrane complexes of red blood cell membranes solubilized in acidified organic solvents, in: Methods in Enzymology,Vol. 32 (S. Fleischer and C. Parker, eds.) (Biomembranes, Part B), pp. 468–475, Academic Press, New York.Google Scholar
  119. Zahler, P., and Wallach, D. F. H., 1967, Isolation of lipid-free plasma membrane proteins by gel filtration on Sephadex LH-20 using 2-chloroethanol—water as solvent, Biochim. Biophys. Acta 135: 371.PubMedGoogle Scholar
  120. Zahler, P., and Weibel, R. E., 1970, Reconstitution of membranes by recombing proteins and lipids derived from erythrocyte stroma, Biochim. Biophys. Acta 219: 320.PubMedGoogle Scholar
  121. Zahler, P. H., Wallach, D. H. F., and Löscher, E. F., 1967, Complete solubilization of plasma membranes and isolation of lipid-free membrane proteins, in: Protides of the Biological Fluids, Vol. 15 (H. Peeters, ed.), pp. 69–78, Elsevier Publishing Company, New York.Google Scholar
  122. Zwaal, R. F. A., and van Deenen, L. L. M., 1968a, The solubilization of human erythrocyte membranes by n-pentanol, Biochim. Biophys. Acta 150: 323.PubMedGoogle Scholar
  123. Zwaal, R. F. A., and van Deenen, L. L. M., 1968a, The solubilization of human erythrocyte membranes by n-pentanol, Biochim. Biophys. Acta 150: 323.PubMedGoogle Scholar
  124. Zwaal, R. F. A., and van Deenen, L. L. M., 1970, Interactions between proteins and lipids from human red cell membranes, Chem. Phys. Lipids 4: 311.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Peter Zahler
    • 1
  • Verena Niggli
    • 1
  1. 1.Institute of BiochemistryUniversity of BerneBerneSwitzerland

Personalised recommendations