Advertisement

Determination of the Molecular Weights of Membrane Proteins and Polypeptides

  • Wayne W. Fish

Abstract

The number of methods available for the estimation of the molecular weights of native proteins and/or their constituent polypeptide chains is greater now than ever before. The contemporary investigator commonly has access to an analytical ultracentrifuge, and, with the advent of simple and inexpensive semiempirical methods such as gel chromatography and gel electrophoresis in denaturing solvents, what was once a major undertaking has become a matter of routine. Unfortunately, this generalization most aptly applies to those who work with proteins whose origin is a hydrophilic environment, such as cytoplasm and serum; the investigator who is engaged in the study of membranes and membrane proteins finds himself dealing with macromolecules that must function in a nonaqueous environment and therefore often do not conform to the expected behavioral patterns of hydrophilic proteins.

Keywords

Specific Volume Polypeptide Chain Sedimentation Velocity Frictional Coefficient Sedimentation Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackers, G. K., 1964, Molecular exclusion and restricted diffusion processes in molecularsieve chromatography, Biochemistry 3:723.PubMedCrossRefGoogle Scholar
  2. Ackers, G. K., 1967, A new calibration procedure for gel filtration columns, J. Biol. Chem. 242:3237.Google Scholar
  3. Ackers, G. K., 1970, Analytical gel chromatography of proteins, in: Advances in Protein Chemistry, Vol. 24 (C. B. Anfinsen, Jr., J. T. Edsall, and F. M. Richards, eds.), pp. 343–446, Academic Press, New York.Google Scholar
  4. Adams, E. T. Jr., 1969, Chemically reacting systems of the type A + B⇋AB. I. Sedimentation equilibrium of ideal solutions, Ann. N. Y. Acad. Sci. 164:226.CrossRefGoogle Scholar
  5. Agrawal, B. B. L., and Goldstein, I. J., 1965, Specific binding of concanavalin A to crosslinked dextran gels, Biochem. J. 96:23c.Google Scholar
  6. Albertsson, P. A., 1960, The Partition of Cell Particles and Macromolecules, Academic Press, New York.Google Scholar
  7. Allen, R. C., and Maurer, H. R. (eds.), 1974, Electrophoresis and Isoelectric Focusing in Polyacrylamide Gel, Walter de Gruyter, Berlin.Google Scholar
  8. Allison, J. H., Agrawal, H. C., and Moore, B. W., 1974, Effect of N,N,N′,N′-tetramethyl-ethylene-diamine on the migration of proteins in SDS polyacrylamide gels, Anal. Biochem. 58:592.PubMedCrossRefGoogle Scholar
  9. Andrews, P., 1964, Estimation of the molecular weights of proteins by Sephadex gelfiltration, Biochem. J. 91:222.PubMedGoogle Scholar
  10. Andrews, P., 1965, The gel-filtration behavior of proteins related to their molecular weights over a wide range, Biochem. J. 96:595.PubMedGoogle Scholar
  11. Ashwell, G., 1966, New colorimetric methods of sugar analysis, in: Methods in Enzymology, Vol. 8 (E. F. Neufeld and V. Ginsburg, eds.), pp. 85–95, Academic Press, New York.Google Scholar
  12. Banker, G. A., and Cotman, C. W., 1972, Measurement of free electrophoretic mobility and retardation coefficient of protein sodium dodecyl sulfate complexes by gel electrophoresis—A method to validate molecular weight estimates, J. Biol. Chem. 247:5856.PubMedGoogle Scholar
  13. Bio-Rad Laboratories, 1971, Gel Chromatography: A Laboratory Manual, Richmond, Calif.Google Scholar
  14. Casassa, E. F., 1967, Equilibrium distribution of flexible polymer chains between a macroscopic solution phase and small voids, J. Polymer Sci. 85:773.CrossRefGoogle Scholar
  15. Casassa, E. F., and Eisenberg, H., 1964, Thermodynamic analysis of multicomponent solutions, in: Advances in Protein Chemistry, Vol. 19 (C. B. Anfinsen, Jr., M. L. Anson, J. T. Edsall, and F. M. Richards, eds.), pp. 287–395, Academic Press, New York.Google Scholar
  16. Chervenka, C. H., 1969, A Manual of Methods for the Analytical Ultracentrifuge, Spinco Division of Beckman Instruments, Palo Alto, Calif.Google Scholar
  17. Chervenka, C. H., 1970, Long-column meniscus depletion sedimentation equilibrium technique for the analytical ultracentrifuge, Anal. Biochem. 34:24.PubMedCrossRefGoogle Scholar
  18. Chrambach, A., and Rodbard, D., 1971, Polyacrylamide gel electrophoresis, Science 172:440.PubMedCrossRefGoogle Scholar
  19. Cohn, E. J., and Edsall, J. T., 1943, Proteins, Amino Acids and Peptides as Ions and Dipolar Ions, Reinhold, New York (reprinted 1965, Hafner, New York).Google Scholar
  20. Creeth, J. M., and Pain, R. H., 1967, The determination of molecular weights of biological macromolecules by ultracentrifuge methods, in: Progress in Biophysics and Molecular Biology, Vol. 17 (J. A. V. Butler and D. Noble, eds.), pp. 217–287, Pergamon Press, Oxford.Google Scholar
  21. Davies, G. E., and Stark, G. R., 1970, Use of dimethyl suberimidate, a cross-linking reagent, in studying the subunit structure of oligomeric proteins, Proc. Natl. Acad. Sci. U.S.A. 66:651.PubMedCrossRefGoogle Scholar
  22. Davison, P. F., 1968, Proteins in denaturing solvents: Gel exclusion studies, Science 161:906.PubMedCrossRefGoogle Scholar
  23. Determann, H., 1969, Gel Chromatography, 2nd ed., Springer-Verlag, New York.CrossRefGoogle Scholar
  24. Dunker, A. K., and Rueckert, R. R., 1969, Observations on molecular weight determinations on polyacrylamide gel, J. Biol. Chem. 244:5074.PubMedGoogle Scholar
  25. Dyson, R. D., 1970, A simple alignment test for the interference optics of the ultracentrifuge, Anal. Biochem. 33:193.PubMedCrossRefGoogle Scholar
  26. Edelstein, S. J., and Ellis, G. H., 1971, Observations on the labeling of fringes for ultra-centrifugation with interference optics, Anal. Biochem. 43:89.PubMedCrossRefGoogle Scholar
  27. Edelstein, S. J., and Schachman, H. K., 1967, The simultaneous determination of partial specific volumes and molecular weights with microgram quantities, J. Biol. Chem. 242:306.PubMedGoogle Scholar
  28. Edelstein, S. J., and Schachman, H. K., 1973, Measurement of partial specific volume by sedimentation equilibrium in H2O-D2O solutions, in: Methods in Enzymology, Vol. 27 (C. H. W. Hirs and S. N. Timasheff, eds.), pp. 82–98, Academic Press, New York.Google Scholar
  29. Eng, P. R., and Parkes, C. O., 1974, SDS electrophoresis of fluorescamine-labeled proteins, Anal. Biochem. 59:323.PubMedCrossRefGoogle Scholar
  30. Fairbanks, G., Jr., Levinthal, C., and Reeder, R. H., 1965, Analysis of 14C-labeled proteins by disc electrophoresis, Biochem. Biophys. Res. Commun. 20:393.PubMedCrossRefGoogle Scholar
  31. Fairbanks, G., Steck, T. L., and Wallach, D. F. H., 1971, Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane, Biochemistry 10:2606.PubMedCrossRefGoogle Scholar
  32. Fass, D. N., and Mann, K. G., 1973, Activation of fluorescein-labeled prothrombin, J. Biol. Chem. 248:3280.PubMedGoogle Scholar
  33. Ferguson, K. A., 1964, Starch-gel electrophoresis—Application to the classification of pituitary proteins and polypeptides, Metabolism 13:985.PubMedCrossRefGoogle Scholar
  34. Fish, W. W., and Leach, B. S., 1973, Soybean trypsin inhibitor in 6 M guanidinium chloride: To unfold or not to unfold? Fed. Proc. 32:1548.Google Scholar
  35. Fish, W. W., Mann, K. G., and Tanford, C., 1969, The estimation of polypeptide chain molecular weights by gel filtration in 6 M guanidine hydrochloride, J. Biol. Chem. 244:4989.PubMedGoogle Scholar
  36. Fish, W. W., Reynolds, J. A., and Tanford, C., 1970, Gel chromatography of proteins in denaturing solvents—Comparison between sodium dodecyl sulfate and guanidine hydrochloride as denaturants, J. Biol. Chem. 245:5166.PubMedGoogle Scholar
  37. Fujita, H., 1962, Mathematical Theory of Sedimentation Analysis, Academic Press, New York.Google Scholar
  38. Furthmayr, H., and Timpl, R., 1971, Characterization of collagen peptides by sodium dodecylsulfate-polyacrylamide electrophoresis, Anal. Biochem. 41:510.PubMedCrossRefGoogle Scholar
  39. Gallop, P. M., Blumenfeld, O. O., and Seifter, S., 1972, Structure and metabolism of connective tissue proteins, in: Annual Review of Biochemistry, Vol. 41 (E. E. Snell, P. D. Boyer, A. Meister, and R. L. Sinsheimer, eds.), pp. 617–672, Annual Reviews, Palo Alto, Calif.Google Scholar
  40. Gelotte, B., 1964, Separation of pancreatic enzymes by gel filtration, Acta Chem. Scand. 18:1282.CrossRefGoogle Scholar
  41. Gibbons, R. A., 1972, Physico-chemical methods for the determination of the purity, molecular size and shape of glycoproteins, in: Glycoproteins: Their Composition, Structure and Function, 2nd ed. (A. Gottschalk, ed.), pp. 31–140, Elsevier, New York.Google Scholar
  42. Giddings, J. C., 1968, Statistical theory for the equilibrium distribution of rigid molecules in inert porous networks: Exclusion chromatography, J. Phys. Chem. 72:4397.CrossRefGoogle Scholar
  43. Gilbert, G. A., 1959, Sedimentation and electrophoresis of interacting substances. I. Idealized boundary shape for a single substance aggregating reversibly, Proc. Roy. Soc. Lond. Ser. A 250:377.CrossRefGoogle Scholar
  44. Gilbert, G. A., 1963, Sedimentation and electrophoresis of interacting substances. III. Sedimentation of a reversibly aggregating substance with concentration dependent sedimentation coefficients, Proc. Roy. Soc. Lond. Ser. A 276:354.CrossRefGoogle Scholar
  45. Gilbert, G. A., and Jenkins, R. C. L., 1959, Sedimentation and electrophoresis of interacting substances. II. Asymptotic boundary shape for two substances interacting reversibly, Proc. Roy. Soc. Lond. Ser. A 253:420.CrossRefGoogle Scholar
  46. Glossman, H., and Neville, D. M., Jr., 1971, Glycoproteins of cell surfaces: A comparative study of three different cell surfaces of the rat, J. Biol. Chem. 246:6339.Google Scholar
  47. Goldberg, M. E., and Edelstein, S. J., 1969, Sedimentation equilibrium of paucidisperse systems: Subunit structure of complemented β-galactosidase, J. Mol. Biol. 46:431.PubMedCrossRefGoogle Scholar
  48. Gosting, L. J., 1956, Measurement and interpretation of diffusion coefficients of proteins, in: Advances in Protein Chemistry, Vol. 16 (M. L. Anson, K. Bailey, and J. T. Edsall, eds.), pp. 429–554, Academic Press, New York.Google Scholar
  49. Green, R. W., and Bolognesi, D. P., 1974, Isolation of proteins by gel filtration in 6 M guanidinium chloride: Application to RNA tumor viruses, Anal. Biochem. 57:108.PubMedCrossRefGoogle Scholar
  50. Grefrath, S. P., and Reynolds, J. A., 1974, The molecular weight of the major glycoprotein from the human erythrocyte membrane, Proc. Natl. Acad. Sci. U.S.A. 71:3913.PubMedCrossRefGoogle Scholar
  51. Griffith, I. P., 1972, The effect of cross-links on the mobility of proteins in dodecyl sulfate-polyacrylamide gels, Biochem. J. 126:553.PubMedGoogle Scholar
  52. Guidotti, G., 1973, Osmotic pressure, in: Methods in Enzymology, Vol. 27 (C. H. W. Hirs and S. N. Timasheff, eds.), pp. 256–269, Academic Press, New York.Google Scholar
  53. Gwynne, J. T., and Tanford, C., 1970, A polypeptide chain of very high molecular weight from red blood cell membranes, J. Biol. Chem. 245:3269.PubMedGoogle Scholar
  54. Haberland, M. E., and Reynolds, J. A., 1973, Self-association of cholesterol in aqueous solution, Proc. Natl. Acad. Sci. U.S.A. 70:2313.PubMedCrossRefGoogle Scholar
  55. Hade, E. P. K., and Tanford, C., 1967, Isopiestic compositions as a measure of preferential interactions of macromolecules in two-component solvents: Application to proteins in concentrated aqueous cesium chloride and guanidine hydrochloride, J. Am. Chem. Soc. 89:5034.PubMedCrossRefGoogle Scholar
  56. Handbook of Tables for Mathematics, 3rd ed., 1967, Chemical Rubber Publ. Co., Cleveland.Google Scholar
  57. Hayes, F. N., Hansburg, E., and Mitchell, V. E., 1964, Effect of the phosphorylation state of thymidine derivatives on Sephadex K d values, J. Chromatog. 16:410.CrossRefGoogle Scholar
  58. Hays, J. B., Simoni, R. D., and Roseman, S., 1973, Sugar transport, V. A trimeric lactose-specific phosphocarrier protein of the Staphylococcus aureus phosphotransferase system, J. Biol. Chem. 248:941.PubMedGoogle Scholar
  59. Helenius, A., and Simons, K., 1972, The binding of detergents to lipophilic and hydrophilic proteins, J. Biol. Chem. 247:3656.PubMedGoogle Scholar
  60. Helleiner, C. W., and Wunner, W. H., 1971, A simple method for counting 14C-and 3H-proteins in polyacrylamide gels, Anal. Biochem. 39:333.PubMedCrossRefGoogle Scholar
  61. Hellung-Larsen, P., 1971, Liquid scintillation counting of 3H and 32P RNA in slices of polyacrylamide gels, Anal. Biochem. 39:454.PubMedCrossRefGoogle Scholar
  62. Henn, S. W., and Ackers, G. K., 1969, Molecular sieve studies of interacting protein systems. V. Association of subunits of d-amino acid oxidase apoenzyme, Biochemistry 8:3829.PubMedCrossRefGoogle Scholar
  63. Huang, C., and Charlton, J. P., 1971, Studies on phosphatidylcholine vesicles, J. Biol. Chem. 246:2555.PubMedGoogle Scholar
  64. Karam, J. D., and Bowles, M. G., 1974, Mutation to overproduction of bacteriophage T4 gene products, J. Virol. 13:428.PubMedGoogle Scholar
  65. Kawahara, K., 1969, Evaluation of diffusion coefficients of proteins from sedimentation boundary curves, Biochemistry 8:2551.PubMedCrossRefGoogle Scholar
  66. Kielley, W. W., and Harrington, W. F., 1960, A model for the myosin molecule, Biochim. Biophys. Acta 41:401.PubMedCrossRefGoogle Scholar
  67. Kratky, O., Leopold, H., and Stabinger, H., 1973, The determination of the partial specific volume of proteins by the mechanical oscillator technique, in: Methods in Enzymology, Vol. 27 (C. H. W. Hirs and S. N. Timasheff, eds.), pp. 98–110, Academic Press, New York.Google Scholar
  68. Kupke, D. W., and Beams, J. W., 1972, Magnetic densimetry: Partial specific volume and other applications, in: Methods in Enzymology, Vol. 26 (C. H, W. Hirs and S. N. Timasheff, eds.), pp. 74–107, Academic Press, New York.Google Scholar
  69. La Bar, F. E., 1965, A procedure for molecular weight measurements: Application to chymotrypsinogen A, Proc. Natl. Acad. Sci. U.S.A. 54:31.CrossRefGoogle Scholar
  70. Laemmli, U. K., 1970, Cleavage of structural proteins during assembly of the head of bacteriophage T4, Nature 227:680.PubMedCrossRefGoogle Scholar
  71. Laurent, T. C., and Killander, J., 1964, A theory of gel filtration and its experimental verification, J. Chromatog. 14:317.CrossRefGoogle Scholar
  72. Leach, B. S., and Fish, W. W., 1974, The reliability of glycoprotein molecular weights as estimated by empirical methods, in: Abstracts of 168th American Chemical Society Meeting, Atlantic City, N.J., September 1974.Google Scholar
  73. Lee, J. C., and Timasheff, S. N., 1974, Partial specific volumes and interactions with solvent components of proteins in guanidine hydrochloride, Biochemistry 13:257.PubMedCrossRefGoogle Scholar
  74. Makino, S., Reynolds, J. A., and Tanford, C., 1973, The binding of deoxycholate and Triton X-100 to proteins, J. Biol. Chem. 248:4926.PubMedGoogle Scholar
  75. Mandelkern, L., and Flory, P. G., 1952, The frictional coefficient for flexible chain molecules in dilute solution, J. Chem. Phys. 20:212.CrossRefGoogle Scholar
  76. Mann, K. G., and Fish, W. W., 1972, Protein polypeptide chain molecular weights by gel chromatography in guanidinium chloride, in: Methods in Enzymology, Vol. 26 (C. H. W. Hirs and S. N. Timasheff, eds.), pp. 28–42, Academic Press, New York.Google Scholar
  77. Mann, K. G., Fish, W. W., Cox, A. C., and Tanford, C., 1970, Single-chain nature of human serum transferrin, Biochemistry 9:1348.PubMedCrossRefGoogle Scholar
  78. Mann, K. G., Fass, D. N., and Fish, W. W., 1973, Polypeptide chain molecular weight determination by gel permeation studies on agarose columns in 6M guanidinium chloride, in: Polymer Molecular Weight Methods (M. Ezrin, ed.), Vol. 125 of Advances in Chemistry Series (R. F. Gould, ed.), pp. 310–326, American Chemical Society, Washington, D.C.CrossRefGoogle Scholar
  79. Martin, R. G., and Ames, B. N., 1961, A method for determining the sedimentation behavior of enzymes: Application to protein mixtures, J. Biol. Chem. 236:1372.PubMedGoogle Scholar
  80. Maurer, H. R., 1974, Requirements of reproducible and standardizable polyacrylamide gel electrophoresis, in: Electrophoresis and Isoelectric Focusing in Polyacrylamide Gel (R. C. Allen and H. R. Maurer, eds.), pp. 23–27, Walter de Gruyter, Berlin.Google Scholar
  81. McEwen, C. R., 1967, Tables for estimating sedimentation through linear concentration gradients of sucrose solution, Anal. Biochem. 20:114.PubMedCrossRefGoogle Scholar
  82. Nelson, C. A., Lee, J. A., Brewster, M., and Morris, M. D., 1974, Flotation equilibrium of serum low density lipoproteins, Anal Biochem. 59:69.PubMedCrossRefGoogle Scholar
  83. Neville, D. M., Jr., 1971, Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system, J. Biol. Chem. 246:6328.PubMedGoogle Scholar
  84. Nozaki, Y., and Tanford, C., 1970, The solubility of amino acids, diglycine, and triglycine in aqueous guanidine hydrochloride solutions, J. Biol. Chem. 245:1648.PubMedGoogle Scholar
  85. O’Farrell, P. Z., and Gold, L. M., 1973, Bacteriophage T4 gene expression: Evidence for two classes of pre-replicative cistrons, J. Biol. Chem. 248:5502.PubMedGoogle Scholar
  86. O’Farrell, P. Z., Gold, L. M., and Huang, W. M., 1973, The identification of prereplicative bacteriophage T4 proteins, J. Biol. Chem. 248:5499.PubMedGoogle Scholar
  87. Ogston, A. G., 1958, The spaces in a uniform random suspension of fibres, Trans. Faraday Soc. 54:1754.CrossRefGoogle Scholar
  88. Overbeek, J. T. G., 1950, Quantitative interpretation of the electrophoretic velocity of colloids, Advan. Colloid Sci. 3:97.Google Scholar
  89. Page, M., and Godin, C., 1969, On the determination of the molecular weight of protein subunits on Sephadex G-200 in the presence of detergent: Glutamate dehydrogenase, Can. J. Biochem. 47:401.PubMedCrossRefGoogle Scholar
  90. Panyim, S., and Chalkley, R., 1969, High resolution acrylamide gel electrophoresis of histones, Arch. Biochem. Biophys. 130:337.PubMedCrossRefGoogle Scholar
  91. Panyim, S., and Chalkley, R., 1971, The molecular weights of vertebrate histones exploiting a modified sodium dodecyl sulfate electrophoretic method, J. Biol. Chem. 246:7557.PubMedGoogle Scholar
  92. Pisano, J. J., Finlayson, J. S., and Peyton, M. P., 1969, Chemical and enzymic detection of protein cross-links. Measurement of ε-(γ-glutamyl)lysine in fibrin polymerized by factor XIII, Biochemistry 8:871.PubMedCrossRefGoogle Scholar
  93. Pitt-Rivers, R., and Impiombato, F.S.A., 1968, The binding of sodium dodecyl sulfate to various proteins, Biochem. J. 109:825.PubMedGoogle Scholar
  94. Pitts, O. M., Priest, D. G., and Fish, W. W., 1974, Uricase: Subunit composition and resistance to denaturants, Biochemistry 13:888.PubMedCrossRefGoogle Scholar
  95. Pittz, E. P., Lee, J. C., Bablouzian, B., Townend, R., and Timasheff, S. N., 1973, Light scattering and differential refractometry, in: Methods in Enzymology, Vol. 27 (C. H. W. Hirs and S. N. Timasheff, eds.), pp. 209–255, Academic Press, New York.Google Scholar
  96. Piziak, V. K., Triplett, R. B., and Fisher, W. R., 1973, Purification of the apoprotein from human low-density lipoprotein, Fed. Proc. 32:1854.Google Scholar
  97. Poole, T., Leach, B. S., and Fish, W. W., 1974, Analysis of polypeptide molecular weights by electrophoresis in urea, Anal. Biochem. 60:596.PubMedCrossRefGoogle Scholar
  98. Porath, J., 1960, Gel filtration of proteins, peptides and amino acids, Biochim. Biophys. Acta 39:193.PubMedCrossRefGoogle Scholar
  99. Porath, J., 1963, Recently developed fractionation procedures and their application to peptide and protein hormones, Pure Appl. Chem. 6:233.CrossRefGoogle Scholar
  100. Pusztai, A., and Watt, W. B., 1970, The determination of the molecular size of peptides and proteins by chromatography on Bio-Gel P-100 columns in phenol-acetic acid-water (1:1:1 W/V/V) solvent mixture, Biochim. Biophys. Acta 214:463.PubMedCrossRefGoogle Scholar
  101. Ragland, W. L., Pace, J. L., and Kemper, D. L., 1974, Fluorometric scanning of fluores-camine-labeled proteins in polyacrylamide gels, Anal. Biochem. 59:24.PubMedCrossRefGoogle Scholar
  102. Reisler, E., and Eisenberg, H., 1969, Interpretation of equilibrium sedimentation measurements of proteins in guanidine hydrochloride solutions: Partial volumes, density increments, and the molecular weight of the subunits of rabbit muscle aldolase, Biochemistry 8:4572.PubMedCrossRefGoogle Scholar
  103. Reisner, A. H., Rowe, J., and Macindoe, H. M., 1969, The largest known monomeric globular proteins, Biochim. Biophys. Acta 188:196.PubMedCrossRefGoogle Scholar
  104. Reynolds, J. A., and Tanford, C., 1970a, Binding of dodecyl sulfate to proteins at high binding ratios: Possible implications for the state of proteins in biological membranes, Proc. Natl. Acad. Sci. U.S.A. 66:1002.PubMedCrossRefGoogle Scholar
  105. Reynolds, J. A., and Tanford, C., 1970b, The gross conformation of protein-sodium dodecyl sulfate complexes, J. Biol. Chem. 245:5161.PubMedGoogle Scholar
  106. Rice, R. H., and Means, G. E., 1971, Radioactive labeling of proteins in vitro, J. Biol. Chem. 246:831.PubMedGoogle Scholar
  107. Richards, E. G., Teller, D. C., and Schachman, H. K., 1968, Ultracentrifuge studies with Rayleigh interference optics. II. Low-speed sedimentation equilibrium of homogeneous systems, Biochemistry 7:1054.PubMedCrossRefGoogle Scholar
  108. Richards, E. G., Teller, D., and Schachman, H. K., 1971a, Alignment of Schlieren and Rayleigh optical systems in the ultracentrifuge. I. Focusing of the camera and cylindrical lenses, Anal. Biochem. 41:189.PubMedCrossRefGoogle Scholar
  109. Richards, E. G., Teller, D. C., Hoagland, V. D., Jr., Haschemeyer, R. H., and Schachman, H. K., 1971b, Alignment of Schlieren and Rayleigh optical systems in the centrifuge. II. A general procedure, Anal. Biochem. 41:215.PubMedCrossRefGoogle Scholar
  110. Richards, E. G., Bell-Clark, J., Kirschner, M., Rosenthal, A., and Schachman, H. K., 1972, Alignment of Schlieren and Rayleigh optical systems in the ultracentrifuge. 3. Design, construction, and placement of Rayleigh mask, Anal. Biochem. 46:295.PubMedCrossRefGoogle Scholar
  111. Roark, D. E., and Yphantis, D. A., 1969, Studies of self-associating systems by equilibrium ultracentrifugation, Ann. N.Y. Acad. Sci. 164:245.PubMedCrossRefGoogle Scholar
  112. Robinson, N. C., and Tanford, C., 1975, The binding of deoxycholate, Triton X-100, sodium dodecyl sulfate, and phosphatidylcholine vesicles to cytochrome b 5, Biochemistry 14:369.PubMedCrossRefGoogle Scholar
  113. Rodbard, D., and Chrambach, A., 1970, Unified theory for gel electrophoresis and gel filtration, Proc. Natl. Acad. Sci. U.S.A. 65:970.PubMedCrossRefGoogle Scholar
  114. Rodbard, D., and Chrambach, A., 1971, Estimation of molecular radius, free mobility, and valence using polyacrylamide gel electrophoresis, Anal. Biochem. 40:95.PubMedCrossRefGoogle Scholar
  115. Roxby, R., Miller, K., Blair, D. P., and Van Holde, K. E., 1974, Subunits and association equilibria of Callianassa californiensis hemocyanin, Biochemistry 13:1662.PubMedCrossRefGoogle Scholar
  116. Schachman, H. K., 1959, Ultracentrifugation in Biochemistry, Academic Press, New York.Google Scholar
  117. Schachman, H. K., and Edelstein, S. J., 1966, Ultracentrifuge studies with absorption optics. IV. Molecular weight determinations at the microgram level, Biochemistry 5:2681.PubMedCrossRefGoogle Scholar
  118. Schachman, H. K., and Edelstein, S. J., 1973, Ultracentrifugal studies with absorption optics and a split-beam photoelectric scanner, in: Methods in Enzymology, Vol. 27 (C. H. W. Hirs and S. N. Timasheff, eds.), pp. 3–59, Academic Press, New York.Google Scholar
  119. Scheraga, H. A., and Mandelkern, L., 1953, Consideration of the hydrodynamic properties of proteins, J. Am. Soc. 75:179.CrossRefGoogle Scholar
  120. Schubert, D., 1970, Immunoglobulin biosynthesis. IV. Carbohydrate attachment to immunoglobulin subunits, J. Mol. Biol. 51:287.PubMedCrossRefGoogle Scholar
  121. Schultz, J., 1967, Cleavage at aspartic acid, in: Methods in Enzymology, Vol. 11 (C. H. W. Hirs, ed.), pp. 255–263, Academic Press, New York.Google Scholar
  122. Segrest, J. P., Jackson, R. L., Andrews, E. P., and Marchesi, V. T., 1971, Human erythrocyte membrane glycoprotein: A re-evaluation of the molecular weight as determined by SDS polyacrylamide gel electrophoresis, Biochem. Biophys. Res. Commun. 44:390.PubMedCrossRefGoogle Scholar
  123. Shapiro, A. L., Vinuela, E., and Maizel, J. V., 1967, Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels, Biochem. Biophys. Res. Commun. 28:815.PubMedCrossRefGoogle Scholar
  124. Shirahama, K., Tsujii, K., and Takagi, T., 1974, Free boundary electrophoresis of sodium dodecyl sulfate-protein polypeptide complexes with special reference to SDS-polyacrylamide gel electrophoresis, J. Biochem. 75:309.PubMedGoogle Scholar
  125. Siegel, L. M., and Monty, K. J., 1966, Determination of molecular weights and frictional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation: Application to crude preparations of sulfite and hydroxylamine reductase, Biochim. Biophys. Acta 112:346.PubMedCrossRefGoogle Scholar
  126. Spiro, R. G., 1973, Glycoproteins, in: Advances in Protein Chemistry, Vol. 27 (C. B. Anfinsen, J. T. Edsall, and F. M. Richards, eds.), pp. 349–467, Academic Press, New York.Google Scholar
  127. Stein, S. Chang, C. H., Böhlen, P., Imai, K., and Udenfriend, S., 1974, Amino acid analysis with fluorescamine of stained protein bands from polyacryiamide gels, Anal. Biochem. 60:272.PubMedCrossRefGoogle Scholar
  128. Squire, P. G., 1964, A relationship between the molecular weights of macromolecules and their elution volumes based on a model for Sephadex gel filtration, Arch. Biochem. Biophys. 107:471.PubMedCrossRefGoogle Scholar
  129. Svedberg, T., and Pederson, K. O., 1940, The Ultracentrifuge, Oxford University Press, London.Google Scholar
  130. Swaney, J. B., Vande Woude, G. F., and Bachrach, H. L., 1974, Sodium dodecylsulfate-dependent anomalies in gel electrophoresis: Alterations in the banding patterns of foot-and-mouth disease virus polypeptides, Anal. Biochem. 58:337.PubMedCrossRefGoogle Scholar
  131. Swank, R. T., and Munkres, K. D., 1971, Molecular weight analysis of oligopeptides by electrophoresis in polyacrylamide gel with sodium dodecyl sulfate, Anal. Biochem. 39:462.PubMedCrossRefGoogle Scholar
  132. Tanford, C., 1961, Physical Chemistry of Macromolecules, Wiley, New York.Google Scholar
  133. Tanford, C., 1968, Protein denaturation, in: Advances in Protein Chemistry, Vol. 23 (C. B. Anfinsen, Jr., M. L. Anson, J. T. Edsall, and F. M. Richards, eds.), pp. 121–282, Academic Press, New York.Google Scholar
  134. Tanford, C., Kawahara, K., and Lapanje, S., 1967, Proteins as random coils. I. Intrinsic viscosities and sedimentation coefficients in concentrated guanidine hydrochloride, J. Am. Chem. Soc. 89:729.CrossRefGoogle Scholar
  135. Tanford, C., Nozaki, Y., Reynolds, J. A., and Makino, S., 1974, Molecular characterization of proteins in detergent solutions, Biochemistry, 13:2369.PubMedCrossRefGoogle Scholar
  136. Teller, D. C., 1973, Characterization of proteins by sedimentation equilibrium in the analytical ultracentrifuge, in: Methods in Enzymology, Vol. 27 (C. H. W. Hirs and S. N. Timasheff, eds.), PP-346–441, Academic Press, New York.Google Scholar
  137. Thomas, J. O., and Edelstein, S. J., 1971, Molecular weights and volumes from density perturbation ultracentrifugation: Application to aldolase and deoxyribonucleic acid polymerase in solutions of guanidine hydrochloride, Biochemistry 10:447.CrossRefGoogle Scholar
  138. Traube, J., 1899, Ueber den Raum der Atome, in: Sammlung Chemischer und Chemishtechnischer Vorträge, Vol. 4 (F. B. Ahrens, ed.), pp. 255–332, Ferdinand Enke, Stuttgart.Google Scholar
  139. Tung, J.-S., and Knight, C. A., 1972, Relative importance of some factors affecting the electrophoretic migration of proteins in sodium dodecyl sulfate-polyacrylamide gels, Anal. Biochem. 48:153.PubMedCrossRefGoogle Scholar
  140. Van Holde, K. E., 1967, Sedimentation equilibrium, in: Fractions, No. 1, Beckman Instruments, Palo Alto, Calif.Google Scholar
  141. Van Holde, K.-E., 1971, Physical Biochemistry, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  142. Warshaw, H. S., and Ackers, G. K., 1971, Molecular sieve studies of interacting protein systems. VIII. Critical evaluation of the equilibrium saturation technique using stacked gel columns, Anal. Biochem. 42:405.PubMedCrossRefGoogle Scholar
  143. Weber, K., and Osborn, M., 1969, The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis, J. Biol. Chem. 244:4406.PubMedGoogle Scholar
  144. Weber, K., Pringle, J. R., and Osborn, M., 1972, Measurement of molecular weights by electrophoresis on SDS-acrylamide gel, in: Methods in Enzymology, Vol. 26 (C. H. W. Hirs and S. N. Timasheff, eds.), pp. 3–27, Academic Press, New York.Google Scholar
  145. Weiner, A. M., Platt, T., and Weber, K., 1972, Amino-terminal sequence analysis of proteins purified on a nanomole scale by gel electrophoresis, J. Biol. Chem. 247:3242.PubMedGoogle Scholar
  146. Wheaton, R. M., and Bauman, W. C., 1953, Nonionic separations with ion-exchange resins, Ann. N.Y. Acad. Sci. 57:159.PubMedCrossRefGoogle Scholar
  147. Whitaker, J. R., 1963, Determination of molecular weights of proteins by gel filtration on Sephadex, Anal. Chem. 35:1950.CrossRefGoogle Scholar
  148. Williams, J. G., and Gratzer, W. B., 1971, Limitations of the detergent-polyacrylamide gel electrophoresis method for molecular weight determinations of proteins, J. Chromatog. 57:121.CrossRefGoogle Scholar
  149. Williams, J. W., 1972, Ultracentrifugation of Macromolecules: Modern Topics, Academic Press, New York.Google Scholar
  150. Williams, J. W., Van Holde, K. E., Baldwin, R. L., and Fujita, H., 1958, The theory of sedimentation analysis, Chem. Rev. 58:715.CrossRefGoogle Scholar
  151. Wolf, B., Lausarot, P. M., Lesnaw, J. A., and Reichmann, M. E., 1970, Preparation of polymeric protein markers and an investigation of their behavior in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Biochim. Biophys. Acta 200:180.PubMedCrossRefGoogle Scholar
  152. Yphantis, D. A., 1964, Equilibrium ultracentrifugation of dilute solutions, Biochemistry 3:297.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Wayne W. Fish
    • 1
  1. 1.Department of BiochemistryMedical University of South CarolinaCharlestonUSA

Personalised recommendations