Fluorescent Probes in Membrane Studies

  • George K. Radda


In recent years a large number of reviews, books, and proceedings of symposia on the application of fluorescence techniques to the study of a variety of biological problems have appeared. This may be regarded as sufficient evidence that the method has something to offer in such studies. But it also raises the question of whether there is a real need for yet another review article at this time. This chapter is therefore intended as a critical but by no means comprehensive presentation of the theoretical and experimental aspects of fluorescence as applied to the study of biological membranes, based mainly on the author’s experience in his own laboratory. This avoids the need for an extensive survey of the literature and perhaps fulfills the role one is often asked to perform in advising those who wish to apply the technique to their particular problems.


Excited State Quantum Yield Fluorescent Probe Fluorescence Lifetime Fluorescence Polarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baba, H., Goodman, L., and Valenti, P. C., 1966, Solvent effects on the fluorescence spectra of diazines: Dipole moments in (n, π*) excited states, J. Am. Chem. Soc. 88:54CrossRefGoogle Scholar
  2. Badley, R. A., Martin, W. G., and Schneider, H., 1973, Dynamic behaviour of fluorescent probes in lipid bilayer model membranes, Biochemistry 12:268.PubMedCrossRefGoogle Scholar
  3. Bakhshiev, N. G., 1965, Universal Intermolecular interactions and their effect on the position of the electronic spectra of molecules in two-component solutions, Opt. Spectrosc. (USSR) 19:196.Google Scholar
  4. Bakker, E. P., and Van Dam, K., 1974, The influence of diffusion potentials across liposomal membranes on the fluorescence intensity of 1-anilinonaphthalenesulphonate, Biochim. Biophys. Acta 339:157.CrossRefGoogle Scholar
  5. Ballard, S. G., Barker, R. W., Barrett-Bee, K. J., Dwek, R. A., Radda, G. K., Smith, D. S., and Taylor, J. A., 1972, The location and response of probes in membranes, in: Biochemistry and Biophysics of Mitochondrial Membranes (G. F. Azzone, E. Carafoli, A. L. Lehninger, E. Quaghariello, and N. Siliprandi, eds.), pp. 257–275, Academic Press, New York, London.Google Scholar
  6. Barker, R. W., Barrett-Bee, K., Berden, J. A., McColl, C. E., and Radda, G. K., 1974, Sideness and location of small molecules in membranes, in: Dynamics of Energy-Transducing Membranes (L. Ernster, R. W. Estabrook, and E. C. Slater, eds.), Elsevier, Amsterdam.Google Scholar
  7. Barrett-Bee, K., 1973, Membrane studies using probe methods, D. Phil. thesis, Oxford.Google Scholar
  8. Barrett-Bee, K., Radda, G. K., and Thomas, N. A., 1972, Interactions, Perturbations and relaxations of membrane-bound molecules, in: Mitochondria/Biomembranes (S. G. van den Bergh, P. Borst, L. L. M. van Deenen, J. C. Riemersma, E. C. Slater, and J. M. Tager, eds.), pp. 231–252, North-Holland, Amsterdam, American Elsevier, New York.Google Scholar
  9. Bashford, L., Johnson, L. N., Radda, G. K., and Ritchie, G. A., 1974, in preparation.Google Scholar
  10. Basu, S., 1964, Theory of solvent effects on molecular electronic spectra, Advan. Quantum Chem. 1:145.CrossRefGoogle Scholar
  11. Bayliss, N. S., 1950, The effect of the electrostatic polarization of the solvent on electronic absorption spectra in solution, J. Chem. Phys. 18:292.CrossRefGoogle Scholar
  12. Beardsley, K., and Cantor, C. R., 1970, Studies of transfer RNA tertiary structure by singlet-singlet energy transfer, Proc. Natl. Acad. Sci. U.S.A. 65:39.PubMedCrossRefGoogle Scholar
  13. Birks, J. B., 1970, Photophysics of Aromatic Molecules, Wiley-Interscience, London, New York, Sydney, Toronto.Google Scholar
  14. Birks, J. B., and Christophorou, L. G., 1963, Excimer fluorescence spectra of pyrene derivatives, Spectrochim. Acta 19:401.CrossRefGoogle Scholar
  15. Birks, J. B., and Christophorou, L. G., 1964, “Excimer” fluorescence. IV. Solution spectra of polycyclic hydrocarbons, Proc. Roy. Soc. Lond. Ser. A 277:571.CrossRefGoogle Scholar
  16. Birks, J. B., and Dyson, D. J., 1963, The relations between fluorescence and absorption properties of organic molecules, Proc. Roy. Soc. Lond. Ser. A 275:135.CrossRefGoogle Scholar
  17. Birks, J. B., Lumb, M. D., and Munro, I. H., 1964, “Excimer” fluorescence. V. Influence of solvent viscosity and temperature, Proc. Roy. Soc. Lond. Ser. A 280:289.CrossRefGoogle Scholar
  18. Blackburn, J. A., 1965, Computer program for multicomponent spectrum analysis using least-squares method, Anal. Chem. 37:1000.CrossRefGoogle Scholar
  19. Blazyk, J. F., and Steim, J. M., 1972, Phase transitions in mammalian membranes, Biochim. Biophys. Acta 266:737.PubMedCrossRefGoogle Scholar
  20. Bowen, E. J., and Rohatgi, K. K., 1953, Photochemistry of anthracene. Part II. The photochemical reaction of anthracene with carbon tetrachloride, Discuss. Faraday Soc. 14:146.CrossRefGoogle Scholar
  21. Bowen, E. J., and Seaman, D., 1962, The efficiency of solution fluorescence, in: Luminescence of Organic and Inorganic Materials (H. P. Kallmann and G. M. Spruch, eds.), pp. 153–160, Wiley, New York, London.Google Scholar
  22. Brand, L., and Gohlke, J. R., 1971, Nanosecond time-resolved fluorescence spectra of a protein-dye complex, J. Biol. Chem. 246:2317.PubMedGoogle Scholar
  23. Brand, L., and Witholt, B., 1967, Fluorescence measurements, Methods Enzymol. 11:776.CrossRefGoogle Scholar
  24. Brocklehurst, B., 1970, Luminescence of molecular systems, Radiat. Res. Rev. 2:149.Google Scholar
  25. Brocklehurst, J. R., Freedman, R. B., Hancock, D. J., and Radda, G. K., 1970, Membrane studies with polarity-dependent and excimer-forming fluorescent probes, Biochem. J. 116:721.PubMedGoogle Scholar
  26. Brooks, D. J., Busby, S. J. W., Dwek, R. A., Griffiths, J. R., and Radda, G. K., 1973, Studies on the molecular aspects of phosphorylase b → a conversion, in: Metabolic Interconversion of Enzymes (E. H. Fisher, E. G. Krebs, H. Neurath, and E. R. Stadtman, eds.), PP. 7–19, Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  27. Bücher, H., Wiegand, J., Snavely, B. B., Beck, K. H., and Kuhn, H., 1969, Electric field induced changes in the optical absorption of a merocyanic dye, Chem. Phys. Lett. 3:508-511.CrossRefGoogle Scholar
  28. Chakrabarti, S. K., and Ware, W. R., 1971, Nanosecond time-resolved emission spec-troscopy of 1-anilino-8-naphthalene-sulphonate, J. Chem. Phys. 55:5494.CrossRefGoogle Scholar
  29. Chan, S. I., Seiter, C. H. A., and Feigenson, C. W., 1972, Anisotropic and restricted molecular motion in lecithin bilayers, Biochem. Biophys. Res. Commun. 46:1488.PubMedCrossRefGoogle Scholar
  30. Chance, B., Baltscheffsky, M., Chang, W., and Vanderkooi, J., 1974, Localized and delocalized potentials in biological membranes, in press.Google Scholar
  31. Chance, B., Erecinska, M., and Radda, G. K., 1975, 12-(9-anthroyl)-stearic acid, a fluorescent probe for the ubiquinone region of the mitochondrial membrane. Eur. J. Biochem., in press.Google Scholar
  32. Cogan, U., Shinitzky, M., Weber, G., and Nishida, T., 1973, Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions determined with fluorescent probes, Biochemistry 12:521.PubMedCrossRefGoogle Scholar
  33. Cohen, L. B., Salzberg, B. M., Davila, H. V., Ross, W. N., Landowne, D., Waggoner, A. S., Wang, C. H., 1974, Changes in axon fluorescence during activity: molecular probes of membrane potential, J. Memb. Biol. 19, 1.CrossRefGoogle Scholar
  34. Cone, R. A., 1972, Rotational diffusion of rhodopsin in the visual receptor membrane, Nature New Biol. 236:39.PubMedGoogle Scholar
  35. Conti, F., and Malerba, F., 1972, Fluorescence signals in ANS-stained lipid bilayers under applied potentials, Biophysik 8:326.PubMedCrossRefGoogle Scholar
  36. Conti, F., Fioravanti, R., Malerba, F., and Wanke, E., 1974, Extrinsic fluorescence in nerve and bilayers, in press.Google Scholar
  37. Döller, E., 1962, Der Konzentrationsumschlag der Fluoreszenz bei Pyrenderivaten, Z. Phys. Chem. (Frankfurt am Main) 34:151.CrossRefGoogle Scholar
  38. Döller, E., and Förster, T., 1962, Der Konzentrationsumschlag der Fluoreszenz des Pyrens, Z. Phys. Chem. (Frankfurt am Main) 34:132.CrossRefGoogle Scholar
  39. Eisinger, J., and Dale, R. E., 1974, Interpretation of intramolecular energy transfer experiments, J. Mol. Biol. 84:643.PubMedCrossRefGoogle Scholar
  40. El-Bayoumi, M. A., Dalle, J.-P., and O’Dwyer, M. F., 1970, Fluorescence lifetimes of molecules that undergo large configurational changes upon excitation, J. Am. Chem. Soc. 92:3494.CrossRefGoogle Scholar
  41. Faucon, J.-F., and Lussan, C., 1973, Aliphatic chain transitions of phospholipid vesicles and phospholipid dispersions determined by polarization of fluorescence, Biochim. Biophys. Acta 307:459.PubMedCrossRefGoogle Scholar
  42. Förster, T., 1959, Transfer mechanisms of electronic excitation. 10th Spiers Memorial Lecture: Transfer mechanisms of electronic excitation, Discuss. Faraday Soc. 27:7.CrossRefGoogle Scholar
  43. Fortes, P. A. G., and Hoffman, J. F., 1971, Interactions of the fluorescent anion 1-anilino-8-naphthalene-sulphonate with membrane charges in human red cell ghosts, J. Membrane Biol. 5:154.CrossRefGoogle Scholar
  44. Fortes, P. A. G., and Hoffman, J. F., 1972, Inhibition of anion permeability in the human red cell by fluorescent probes, in: Second International Symposium on Membrane Permeability of Erythrocytes, Thrombocytes and Leukocytes (E. Gerlach and K. Moser, eds.), pp. 92–95, Verlag der Wiener Medizinischen Akademie, Vienna.Google Scholar
  45. Freedman, R. B., 1969, Studies on the structure and activity of enzymes, D. Phil. thesis, Oxford.Google Scholar
  46. Frye, L. D., and Edidin, M., 1970, The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons, J. Cell. Sci. 7:319.PubMedGoogle Scholar
  47. Galley, W. C., and Purkey, R. M., 1970, Role of heterogeneity of the solvation site in electronic spectra in solution, Proc. Natl. Acad. Sci. U.S.A. 67:1116.PubMedCrossRefGoogle Scholar
  48. Gennis, R. B., and Cantor, C. R., 1972, Use of nonspecific dye labeling for singlet energytransfer measurements in complex systems: A simple model, Biochemistry 11:2509.PubMedCrossRefGoogle Scholar
  49. Gitler, C., 1972, Plasticity of biological membranes, Ann. Rev. Biophys. Bioeng. 1:51.CrossRefGoogle Scholar
  50. Horrocks, A. R., and Wilkinson, F., 1968, Triplet state formation efficiences of aromatic hydrocarbons in solution, Proc. Roy. Soc. Lond. Ser. A 306:257.CrossRefGoogle Scholar
  51. Horrocks, A. R., Kearvell, A., Tickle, K., and Wilkinson, F., 1966, Mechanism of fluorescence quenching in solution. Part 2. Quenching by xenon and intersystem crossing efficiences, Trans. Faraday Soc. 62:3393.CrossRefGoogle Scholar
  52. Horrocks, A. R., Medinger, T., and Wilkinson, F., 1967, Solvent dependence of the quantum yield of the triplet state production of 9-phenylanthracene, Photochem. Photobiol. 6:21.CrossRefGoogle Scholar
  53. Inbar, M., and Shinitzky, M., 1974, Increase of cholesterol level in the surface membrane of lymphoma cells and its inhibitory effect on ascites tumor development, Proc. Natl. Acad. Sci. U.S.A. 71:2128.PubMedCrossRefGoogle Scholar
  54. Katakis, D., 1965, Matrix rank analysis of spectral data, Anal. Chem. 37:876.CrossRefGoogle Scholar
  55. Kosower, E. M., and Tanizawa, K., 1972, Analysis of fluorescence emission and quenching for molecules bearing latent donors, Chem. Phys. Lett. 16:419.CrossRefGoogle Scholar
  56. Lakowicz, J. R., and Weber, G., 1973a, Quenching of fluorescence by oxygen: A probe for structural fluctuations in macromolecules, Biochemistry 12:4161.PubMedCrossRefGoogle Scholar
  57. Lakowicz, J. R., and Weber, G., 1973b, Quenching of protein fluorescence by oxygen: Detection of structural fluctuations in proteins on the nanosecond time scale, Biochemistry 12:4171.PubMedCrossRefGoogle Scholar
  58. Laris, P. C., and Pershadsingh, H. A., 1974, Estimations of membrane potentials in Streptococcus faecalis by means of a fluorescent probe, Biochem. Biophys. Res. Commun. 57:620.PubMedCrossRefGoogle Scholar
  59. Leonhardt, H., and Weiler, A., 1961, Nachweis kurzlebiger Zwischenprodukte bei der Fluoreszenzlöschung, Z. Phys. Chem. (Frankfurt am Main) 29:277.CrossRefGoogle Scholar
  60. Leonhardt, H., and Weller, A., 1962, Fluorescence quenching studied by flash spectroscopy, in: Luminescence of Organic and Inorganic Materials (H. P. Kallmann and G. M. Spruch, eds.), pp. 74–82, Wiley, New York, London.Google Scholar
  61. Leonhardt, H., and Weiler, A., 1963, Electronenübertragungsreaktionen des angeregten Perylens, Ber. Bunsenges. Phys. Chem. 67:791.Google Scholar
  62. Lesslauer, W., Cain, J. E., and Blasie, J. K., 1972, X-ray diffraction studies of lecithin bimolecular leaflets with incorporated fluorescent probes, Proc. Natl. Acad. Sci. U.S.A. 69:1499.PubMedCrossRefGoogle Scholar
  63. Lippert, E., 1957, Spektroskopische Bestimmung des Dipolmomentes aromatischer Verbindungen im ersten angeregten Singulettzustand, Z. Electrochem. 61:962.Google Scholar
  64. Lippert, E., Lüder, W., and Moll, F., 1959a, Küvetten und Lösungsmittel für die Messung der Temperaturabhängigkeit von Electronenspektren, Spectrochim. Acta 15:378.CrossRefGoogle Scholar
  65. Lippert, E., Lüder, W., and Moll, F., 1959b, Polarisations-und Relaxations-Effekte in der Temperaturabhängigkeit von Absorptions-und Fluoreszenzspektren aromatischer Verbindungen in polaren Lösungsmitteln, Spectrochim. Acta 15:858.CrossRefGoogle Scholar
  66. McRae, E. G., 1957, Theory of solvent effects on molecular electronic spectra: Frequency shifts, J. Phys. Chem. 61:562.CrossRefGoogle Scholar
  67. Medinger, T., and Wilkinson, F., 1965, Mechanism of fluorescence quenching in solution. Part I. Quenching by bromobenzene, Trans. Faraday Soc. 61:620.CrossRefGoogle Scholar
  68. Morgan and Radda, 1974, Unpublished observations.Google Scholar
  69. Onsager, L., 1936, Electric moments of molecules in liquids, J. Am. Chem. Soc. 58:1486.CrossRefGoogle Scholar
  70. Oster, G., and Nishijima, Y., 1956, Fluorescence and internal rotation: Their dependence on viscosity of the medium, J. Am. Chem. Soc. 78:1581.CrossRefGoogle Scholar
  71. Overath, P., and Träuble, H., 1973, Phase transitions in cells, membranes and lipids of Escherichia coli: Detection by fluorescent probes, light scattering, and dilatometry, Biochemistry 12:2625.PubMedCrossRefGoogle Scholar
  72. Pecci, J., and Ulrich, F., 1973, Binding of 8-anilino-1-naphthalene sulfonic acid to viable pulmonary macrophages, Biochim. Biophys. Acta 311:251.PubMedCrossRefGoogle Scholar
  73. Perrin, M. J., 1924, Chimie physique—Loi de Decroissance du pouvoir fluorescent en fonction de la concentration, C. R. Acad. Sci. 178:1978.Google Scholar
  74. Platt, J. R., 1956, Wavelength formulas and configuration interaction in Brooker dyes and chain molecules, J. Chem. Phys. 25:80.CrossRefGoogle Scholar
  75. Platt, J. R., 1961, Electrochromism, a possible change of color producible in dyes by an electric field, J. Chem. Phys. 34:862.CrossRefGoogle Scholar
  76. Radda, G. K., 1911a, Enzyme and membrane conformation in biochemical control, Biochem. J. 122:385.Google Scholar
  77. Radda, G. K., 1971b, The design and use of fluorescent probes for membrane studies, Curr. Top. Bioenerg. 4:81.Google Scholar
  78. Radda, G. K., 1973, Probes for enzyme conformation, in: Fluorescence Techniques in Cell Biology (A. A. Thaer and M. Sernetz, eds.), pp. 261–272, Springer-Verlag, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
  79. Radda, G. K., 1975, Fluorescent probes in membrane studies, Phil. Trans. Roy. Soc. Lond. Ser. B, in press.Google Scholar
  80. Radda, G. K., and Smith, D. S., 1970, Retinol: A fluorescent probe for membrane lipids, Fed. Eur. Biochem. Soc. Lett. 9:287.CrossRefGoogle Scholar
  81. Radda, G. K., and Smith, D. S., 1973, Human erythrocytes ghosts: Relationship between membrane permeability and binding kinetics of the fluorescent probe 1-anilinonaph-thalene-8-sulphonate, Biochim. Biophys. Acta 318:197.PubMedCrossRefGoogle Scholar
  82. Radda, G. K., and Vanderkooi, J., 1972, Can fluorescent probes tell us anything about membranes, Biochim. Biophys. Acta 265:509.CrossRefGoogle Scholar
  83. Reeves, J. P., Shechter, E., Weil, R., and Kaback, H. R., 1973, Dansyl-galactoside, a fluorescent probe of active transport in bacterial membrane vesicles, Proc. Natl. Acad. Sci. U.S.A. 70:2722.PubMedCrossRefGoogle Scholar
  84. Robinson, G. W., and Frosch, R. P., 1963, Electronic excitation transfer and relaxation, J. Chem. Phys. 38:1187.CrossRefGoogle Scholar
  85. Rudy, B., and Gitler, C., 1972, Microviscosity of the cell membrane, Biochim. Biophys. Acta 288:231.PubMedCrossRefGoogle Scholar
  86. Sackmann, E., Träuble, H., Galla, H.-J., and Overath, P., 1973, Lateral diffusion, protein mobility, and phase transitions in Escherichia coli membranes, Biochemistry 12:5360.PubMedCrossRefGoogle Scholar
  87. Schuldinger, S., Kerwar, G. K., Weil, R., and Kaback, H. R., 1974, Energy dependent binding of dansylgalactosides to the β-galactoside carrier protein, J. Biol. Chem., in press.Google Scholar
  88. Seliskar, C. J., and Brand, L., 1971, Solvent dependence of the luminescence of N-aryl-aminonaphthalenesulphonates, Science 171:799.PubMedCrossRefGoogle Scholar
  89. Seliskar, C. J., Turner, D. C., Gohlke, J. R., and Brand, L., 1969, The ultraviolet absorption and fluorescence properties of N-arylaminonaphthalenesulphonates and related molecules, in: Molecular Luminescence (E. C. Lim, ed.), pp. 677–696, Benjamin, New York, Amsterdam.Google Scholar
  90. Shechter, E., Gulik-Krzywicki, T., and Kaback, H. R., 1972, Correlations between fluorescence, X-ray diffraction, and physiological properties in cytoplasmic membrane vesicles isolated from Escherichia coli, Biochim. Biophys. Acta 214:466.Google Scholar
  91. Smith, D. S., 1971, Probes for enzyme and membrane structure and function, D. Phil. thesis, Oxford.Google Scholar
  92. Strickler, S. J., and Berg, R. A., 1962, Relationship between absorption intensity and fluorescence lifetime of molecules, J. Chem. Phys. 37:814.CrossRefGoogle Scholar
  93. Stryer, L., 1959, Intramolecular resonance transfer of energy in proteins, Biochim. Biophys. Acta 35:242-244.PubMedCrossRefGoogle Scholar
  94. Tasaki, I., Carbone, E., Sisco, K., and Singer, I., 1973, Spectral analysis of extrinsic fluorescence of the nerve membrane labelled with aminonaphthalene derivatives, Biochim. Biophys. Acta 323:220.PubMedCrossRefGoogle Scholar
  95. Teale, F. W. J., 1969, Fluorescence depolarisation by light-scattering in turbid solutions, Photochem. Photobiol 10:363.PubMedCrossRefGoogle Scholar
  96. Tedeschi, H., 1974, Mitochondrial membrane potential: Evidence from studies with a fluorescent probe, Proc. Natl. Acad. Sci. U.S.A. 71:583.PubMedCrossRefGoogle Scholar
  97. Thomson, A. J., 1969, Fluorescence spectra of some retinyl polyenes, J. Chem. Phys. 51:4106.PubMedCrossRefGoogle Scholar
  98. Träuble, H., and Overath, P., 1973, The structure of Escherichia coli membranes studied by fluorescence measurements of lipid phase transitions, Biochim. Biophys. Acta 307:491.PubMedCrossRefGoogle Scholar
  99. Turner, D. C., and Brand, L., 1968, Quantitative estimation of protein binding site polarity: Fluorescence of N-arylaminonaphthalenesulphonates, Biochemistry 7:3381.PubMedCrossRefGoogle Scholar
  100. Vanderkooi, J., Callis, J., and Chance, B., 1914a, Use of the fluorescent dye, pyrene, to study the dynamic aspects of membrane structure, Histochem. J. 6:301.CrossRefGoogle Scholar
  101. Vanderkooi, J., Fischkoff, S., Chance, B., and Cooper, R. A., 1974, fluorescent probe analysis of the lipid architecture of natural and experimental cholesterol-rich membranes, Biochemistry 13:1589.PubMedCrossRefGoogle Scholar
  102. Vaughan, W. M., and Weber, G., 1970, Oxygen quenching of pyrenebutyric acid fluorescence in water: A dynamic probe of microenvironment, Biochemistry 9:464.PubMedCrossRefGoogle Scholar
  103. Wahl, P., Kasai, M., and Changeux, J.-P., 1971, A study on the motion of proteins in excitable membrane fragments by nanosecond fluorescence polarization spectroscopy, Eur. J. Biochem. 18:332.PubMedCrossRefGoogle Scholar
  104. Ware, W. R., 1962, Oxygen quenching of fluorescence in solution: An experimental study of the diffusion process, J. Phys. Chem. 66:455.CrossRefGoogle Scholar
  105. Ware, W. R., 1973, Techniques for fluorescence lifetime measurements and time-resolved emission spectroscopy, in: Fluorescence Techniques in Cell Biology (A. A. Thaer and M. Sernetz, eds.), pp. 15–27, Springer-Verlag, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
  106. Ware, W. R., Lee, S. K., Brant, G. J., and Chow, P. P., 1971, Nanosecond time-resolved emission spectroscopy: Spectral shifts due to solvent-excited solute relaxation, J. Chem. Phys. 54:4729.CrossRefGoogle Scholar
  107. Weber, C., and Young, L. B., 1964, Fragmentation of bovine serum albumin by pepsin, J. Biol. Chem. 239:1415.PubMedGoogle Scholar
  108. Weber, G., 1961, Enumeration of components in complex systems by fluorescence spec-trophotometry, Nature 190:27.PubMedCrossRefGoogle Scholar
  109. Weber, G., 1971, Theory of fluorescence depolarization by anisotropic brownian rotations: Discontinuous distribution approach, J. Chem. Phys. 55:2399.CrossRefGoogle Scholar
  110. Weber, G., and Bablouzian, B., 1966, Construction and performance of a fluorescence polarization spectrophotometer, J. Biol. Chem. 241:2558.PubMedGoogle Scholar
  111. Weber, G., and Teale, F. W. J., 1957, Determination of the absolute quantum yield of fluorescent solutions, Trans. Faraday Soc. 53:646.CrossRefGoogle Scholar
  112. Weiler, A., and Zachariasse, K., 1969, Chemiluminescence from radical ion recombination, in: Molecular Luminescence (E. C. Lim, ed.), pp. 895–905, Benjamin, New York, Amsterdam.Google Scholar
  113. Whitten, D. G., Happ, J. W., Carlson, G. L. B., and McCall, M. T., 1970, Mechanisms of excited state deactivation: Quenching of excited singlets by nucleophiles, J. Am. Chem. Soc. 92:11.CrossRefGoogle Scholar
  114. Wu, C. W., and Stryer, L., 1972, Proximity relationships in rhodopsin, Proc. Natl. Acad. Sci. U.S.A. 69:1104.PubMedCrossRefGoogle Scholar
  115. Yguerabide, J., 1972, Nanosecond fluorescence spectroscopy of macromolecules, Methods Enzymol. 26:498.PubMedCrossRefGoogle Scholar
  116. Yguerabide, J., 1973, Nanosecond fluorescence spectroscopy of biological macromolecules and membranes, in: Fluorescence Technique in Cell Biology (A. A. Thaer and M. Sernetz, eds.), pp. 311–331, Springer-Verlag, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
  117. Yguerabide, J., and Stryer, L., 1971, Fluorescence spectroscopy of an oriented model membrane, Proc. Natl. Acad. Sci. U.S.A. 68:1217.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • George K. Radda
    • 1
  1. 1.Department of BiochemistryUniversity of OxfordOxfordEngland

Personalised recommendations