Skip to main content

Fluorescent Probes in Membrane Studies

  • Chapter
Biophysical Approaches

Abstract

In recent years a large number of reviews, books, and proceedings of symposia on the application of fluorescence techniques to the study of a variety of biological problems have appeared. This may be regarded as sufficient evidence that the method has something to offer in such studies. But it also raises the question of whether there is a real need for yet another review article at this time. This chapter is therefore intended as a critical but by no means comprehensive presentation of the theoretical and experimental aspects of fluorescence as applied to the study of biological membranes, based mainly on the author’s experience in his own laboratory. This avoids the need for an extensive survey of the literature and perhaps fulfills the role one is often asked to perform in advising those who wish to apply the technique to their particular problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baba, H., Goodman, L., and Valenti, P. C., 1966, Solvent effects on the fluorescence spectra of diazines: Dipole moments in (n, π*) excited states, J. Am. Chem. Soc. 88:54

    Article  CAS  Google Scholar 

  • Badley, R. A., Martin, W. G., and Schneider, H., 1973, Dynamic behaviour of fluorescent probes in lipid bilayer model membranes, Biochemistry 12:268.

    Article  PubMed  CAS  Google Scholar 

  • Bakhshiev, N. G., 1965, Universal Intermolecular interactions and their effect on the position of the electronic spectra of molecules in two-component solutions, Opt. Spectrosc. (USSR) 19:196.

    Google Scholar 

  • Bakker, E. P., and Van Dam, K., 1974, The influence of diffusion potentials across liposomal membranes on the fluorescence intensity of 1-anilinonaphthalenesulphonate, Biochim. Biophys. Acta 339:157.

    Article  CAS  Google Scholar 

  • Ballard, S. G., Barker, R. W., Barrett-Bee, K. J., Dwek, R. A., Radda, G. K., Smith, D. S., and Taylor, J. A., 1972, The location and response of probes in membranes, in: Biochemistry and Biophysics of Mitochondrial Membranes (G. F. Azzone, E. Carafoli, A. L. Lehninger, E. Quaghariello, and N. Siliprandi, eds.), pp. 257–275, Academic Press, New York, London.

    Google Scholar 

  • Barker, R. W., Barrett-Bee, K., Berden, J. A., McColl, C. E., and Radda, G. K., 1974, Sideness and location of small molecules in membranes, in: Dynamics of Energy-Transducing Membranes (L. Ernster, R. W. Estabrook, and E. C. Slater, eds.), Elsevier, Amsterdam.

    Google Scholar 

  • Barrett-Bee, K., 1973, Membrane studies using probe methods, D. Phil. thesis, Oxford.

    Google Scholar 

  • Barrett-Bee, K., Radda, G. K., and Thomas, N. A., 1972, Interactions, Perturbations and relaxations of membrane-bound molecules, in: Mitochondria/Biomembranes (S. G. van den Bergh, P. Borst, L. L. M. van Deenen, J. C. Riemersma, E. C. Slater, and J. M. Tager, eds.), pp. 231–252, North-Holland, Amsterdam, American Elsevier, New York.

    Google Scholar 

  • Bashford, L., Johnson, L. N., Radda, G. K., and Ritchie, G. A., 1974, in preparation.

    Google Scholar 

  • Basu, S., 1964, Theory of solvent effects on molecular electronic spectra, Advan. Quantum Chem. 1:145.

    Article  CAS  Google Scholar 

  • Bayliss, N. S., 1950, The effect of the electrostatic polarization of the solvent on electronic absorption spectra in solution, J. Chem. Phys. 18:292.

    Article  CAS  Google Scholar 

  • Beardsley, K., and Cantor, C. R., 1970, Studies of transfer RNA tertiary structure by singlet-singlet energy transfer, Proc. Natl. Acad. Sci. U.S.A. 65:39.

    Article  PubMed  CAS  Google Scholar 

  • Birks, J. B., 1970, Photophysics of Aromatic Molecules, Wiley-Interscience, London, New York, Sydney, Toronto.

    Google Scholar 

  • Birks, J. B., and Christophorou, L. G., 1963, Excimer fluorescence spectra of pyrene derivatives, Spectrochim. Acta 19:401.

    Article  Google Scholar 

  • Birks, J. B., and Christophorou, L. G., 1964, “Excimer” fluorescence. IV. Solution spectra of polycyclic hydrocarbons, Proc. Roy. Soc. Lond. Ser. A 277:571.

    Article  CAS  Google Scholar 

  • Birks, J. B., and Dyson, D. J., 1963, The relations between fluorescence and absorption properties of organic molecules, Proc. Roy. Soc. Lond. Ser. A 275:135.

    Article  CAS  Google Scholar 

  • Birks, J. B., Lumb, M. D., and Munro, I. H., 1964, “Excimer” fluorescence. V. Influence of solvent viscosity and temperature, Proc. Roy. Soc. Lond. Ser. A 280:289.

    Article  CAS  Google Scholar 

  • Blackburn, J. A., 1965, Computer program for multicomponent spectrum analysis using least-squares method, Anal. Chem. 37:1000.

    Article  CAS  Google Scholar 

  • Blazyk, J. F., and Steim, J. M., 1972, Phase transitions in mammalian membranes, Biochim. Biophys. Acta 266:737.

    Article  PubMed  CAS  Google Scholar 

  • Bowen, E. J., and Rohatgi, K. K., 1953, Photochemistry of anthracene. Part II. The photochemical reaction of anthracene with carbon tetrachloride, Discuss. Faraday Soc. 14:146.

    Article  Google Scholar 

  • Bowen, E. J., and Seaman, D., 1962, The efficiency of solution fluorescence, in: Luminescence of Organic and Inorganic Materials (H. P. Kallmann and G. M. Spruch, eds.), pp. 153–160, Wiley, New York, London.

    Google Scholar 

  • Brand, L., and Gohlke, J. R., 1971, Nanosecond time-resolved fluorescence spectra of a protein-dye complex, J. Biol. Chem. 246:2317.

    PubMed  CAS  Google Scholar 

  • Brand, L., and Witholt, B., 1967, Fluorescence measurements, Methods Enzymol. 11:776.

    Article  CAS  Google Scholar 

  • Brocklehurst, B., 1970, Luminescence of molecular systems, Radiat. Res. Rev. 2:149.

    CAS  Google Scholar 

  • Brocklehurst, J. R., Freedman, R. B., Hancock, D. J., and Radda, G. K., 1970, Membrane studies with polarity-dependent and excimer-forming fluorescent probes, Biochem. J. 116:721.

    PubMed  CAS  Google Scholar 

  • Brooks, D. J., Busby, S. J. W., Dwek, R. A., Griffiths, J. R., and Radda, G. K., 1973, Studies on the molecular aspects of phosphorylase b → a conversion, in: Metabolic Interconversion of Enzymes (E. H. Fisher, E. G. Krebs, H. Neurath, and E. R. Stadtman, eds.), PP. 7–19, Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Bücher, H., Wiegand, J., Snavely, B. B., Beck, K. H., and Kuhn, H., 1969, Electric field induced changes in the optical absorption of a merocyanic dye, Chem. Phys. Lett. 3:508-511.

    Article  Google Scholar 

  • Chakrabarti, S. K., and Ware, W. R., 1971, Nanosecond time-resolved emission spec-troscopy of 1-anilino-8-naphthalene-sulphonate, J. Chem. Phys. 55:5494.

    Article  CAS  Google Scholar 

  • Chan, S. I., Seiter, C. H. A., and Feigenson, C. W., 1972, Anisotropic and restricted molecular motion in lecithin bilayers, Biochem. Biophys. Res. Commun. 46:1488.

    Article  PubMed  CAS  Google Scholar 

  • Chance, B., Baltscheffsky, M., Chang, W., and Vanderkooi, J., 1974, Localized and delocalized potentials in biological membranes, in press.

    Google Scholar 

  • Chance, B., Erecinska, M., and Radda, G. K., 1975, 12-(9-anthroyl)-stearic acid, a fluorescent probe for the ubiquinone region of the mitochondrial membrane. Eur. J. Biochem., in press.

    Google Scholar 

  • Cogan, U., Shinitzky, M., Weber, G., and Nishida, T., 1973, Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions determined with fluorescent probes, Biochemistry 12:521.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, L. B., Salzberg, B. M., Davila, H. V., Ross, W. N., Landowne, D., Waggoner, A. S., Wang, C. H., 1974, Changes in axon fluorescence during activity: molecular probes of membrane potential, J. Memb. Biol. 19, 1.

    Article  CAS  Google Scholar 

  • Cone, R. A., 1972, Rotational diffusion of rhodopsin in the visual receptor membrane, Nature New Biol. 236:39.

    PubMed  CAS  Google Scholar 

  • Conti, F., and Malerba, F., 1972, Fluorescence signals in ANS-stained lipid bilayers under applied potentials, Biophysik 8:326.

    Article  PubMed  CAS  Google Scholar 

  • Conti, F., Fioravanti, R., Malerba, F., and Wanke, E., 1974, Extrinsic fluorescence in nerve and bilayers, in press.

    Google Scholar 

  • Döller, E., 1962, Der Konzentrationsumschlag der Fluoreszenz bei Pyrenderivaten, Z. Phys. Chem. (Frankfurt am Main) 34:151.

    Article  Google Scholar 

  • Döller, E., and Förster, T., 1962, Der Konzentrationsumschlag der Fluoreszenz des Pyrens, Z. Phys. Chem. (Frankfurt am Main) 34:132.

    Article  Google Scholar 

  • Eisinger, J., and Dale, R. E., 1974, Interpretation of intramolecular energy transfer experiments, J. Mol. Biol. 84:643.

    Article  PubMed  CAS  Google Scholar 

  • El-Bayoumi, M. A., Dalle, J.-P., and O’Dwyer, M. F., 1970, Fluorescence lifetimes of molecules that undergo large configurational changes upon excitation, J. Am. Chem. Soc. 92:3494.

    Article  CAS  Google Scholar 

  • Faucon, J.-F., and Lussan, C., 1973, Aliphatic chain transitions of phospholipid vesicles and phospholipid dispersions determined by polarization of fluorescence, Biochim. Biophys. Acta 307:459.

    Article  PubMed  CAS  Google Scholar 

  • Förster, T., 1959, Transfer mechanisms of electronic excitation. 10th Spiers Memorial Lecture: Transfer mechanisms of electronic excitation, Discuss. Faraday Soc. 27:7.

    Article  Google Scholar 

  • Fortes, P. A. G., and Hoffman, J. F., 1971, Interactions of the fluorescent anion 1-anilino-8-naphthalene-sulphonate with membrane charges in human red cell ghosts, J. Membrane Biol. 5:154.

    Article  CAS  Google Scholar 

  • Fortes, P. A. G., and Hoffman, J. F., 1972, Inhibition of anion permeability in the human red cell by fluorescent probes, in: Second International Symposium on Membrane Permeability of Erythrocytes, Thrombocytes and Leukocytes (E. Gerlach and K. Moser, eds.), pp. 92–95, Verlag der Wiener Medizinischen Akademie, Vienna.

    Google Scholar 

  • Freedman, R. B., 1969, Studies on the structure and activity of enzymes, D. Phil. thesis, Oxford.

    Google Scholar 

  • Frye, L. D., and Edidin, M., 1970, The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons, J. Cell. Sci. 7:319.

    PubMed  CAS  Google Scholar 

  • Galley, W. C., and Purkey, R. M., 1970, Role of heterogeneity of the solvation site in electronic spectra in solution, Proc. Natl. Acad. Sci. U.S.A. 67:1116.

    Article  PubMed  CAS  Google Scholar 

  • Gennis, R. B., and Cantor, C. R., 1972, Use of nonspecific dye labeling for singlet energytransfer measurements in complex systems: A simple model, Biochemistry 11:2509.

    Article  PubMed  CAS  Google Scholar 

  • Gitler, C., 1972, Plasticity of biological membranes, Ann. Rev. Biophys. Bioeng. 1:51.

    Article  CAS  Google Scholar 

  • Horrocks, A. R., and Wilkinson, F., 1968, Triplet state formation efficiences of aromatic hydrocarbons in solution, Proc. Roy. Soc. Lond. Ser. A 306:257.

    Article  CAS  Google Scholar 

  • Horrocks, A. R., Kearvell, A., Tickle, K., and Wilkinson, F., 1966, Mechanism of fluorescence quenching in solution. Part 2. Quenching by xenon and intersystem crossing efficiences, Trans. Faraday Soc. 62:3393.

    Article  CAS  Google Scholar 

  • Horrocks, A. R., Medinger, T., and Wilkinson, F., 1967, Solvent dependence of the quantum yield of the triplet state production of 9-phenylanthracene, Photochem. Photobiol. 6:21.

    Article  CAS  Google Scholar 

  • Inbar, M., and Shinitzky, M., 1974, Increase of cholesterol level in the surface membrane of lymphoma cells and its inhibitory effect on ascites tumor development, Proc. Natl. Acad. Sci. U.S.A. 71:2128.

    Article  PubMed  CAS  Google Scholar 

  • Katakis, D., 1965, Matrix rank analysis of spectral data, Anal. Chem. 37:876.

    Article  CAS  Google Scholar 

  • Kosower, E. M., and Tanizawa, K., 1972, Analysis of fluorescence emission and quenching for molecules bearing latent donors, Chem. Phys. Lett. 16:419.

    Article  CAS  Google Scholar 

  • Lakowicz, J. R., and Weber, G., 1973a, Quenching of fluorescence by oxygen: A probe for structural fluctuations in macromolecules, Biochemistry 12:4161.

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz, J. R., and Weber, G., 1973b, Quenching of protein fluorescence by oxygen: Detection of structural fluctuations in proteins on the nanosecond time scale, Biochemistry 12:4171.

    Article  PubMed  CAS  Google Scholar 

  • Laris, P. C., and Pershadsingh, H. A., 1974, Estimations of membrane potentials in Streptococcus faecalis by means of a fluorescent probe, Biochem. Biophys. Res. Commun. 57:620.

    Article  PubMed  CAS  Google Scholar 

  • Leonhardt, H., and Weiler, A., 1961, Nachweis kurzlebiger Zwischenprodukte bei der Fluoreszenzlöschung, Z. Phys. Chem. (Frankfurt am Main) 29:277.

    Article  CAS  Google Scholar 

  • Leonhardt, H., and Weller, A., 1962, Fluorescence quenching studied by flash spectroscopy, in: Luminescence of Organic and Inorganic Materials (H. P. Kallmann and G. M. Spruch, eds.), pp. 74–82, Wiley, New York, London.

    Google Scholar 

  • Leonhardt, H., and Weiler, A., 1963, Electronenübertragungsreaktionen des angeregten Perylens, Ber. Bunsenges. Phys. Chem. 67:791.

    CAS  Google Scholar 

  • Lesslauer, W., Cain, J. E., and Blasie, J. K., 1972, X-ray diffraction studies of lecithin bimolecular leaflets with incorporated fluorescent probes, Proc. Natl. Acad. Sci. U.S.A. 69:1499.

    Article  PubMed  CAS  Google Scholar 

  • Lippert, E., 1957, Spektroskopische Bestimmung des Dipolmomentes aromatischer Verbindungen im ersten angeregten Singulettzustand, Z. Electrochem. 61:962.

    CAS  Google Scholar 

  • Lippert, E., Lüder, W., and Moll, F., 1959a, Küvetten und Lösungsmittel für die Messung der Temperaturabhängigkeit von Electronenspektren, Spectrochim. Acta 15:378.

    Article  Google Scholar 

  • Lippert, E., Lüder, W., and Moll, F., 1959b, Polarisations-und Relaxations-Effekte in der Temperaturabhängigkeit von Absorptions-und Fluoreszenzspektren aromatischer Verbindungen in polaren Lösungsmitteln, Spectrochim. Acta 15:858.

    Article  Google Scholar 

  • McRae, E. G., 1957, Theory of solvent effects on molecular electronic spectra: Frequency shifts, J. Phys. Chem. 61:562.

    Article  CAS  Google Scholar 

  • Medinger, T., and Wilkinson, F., 1965, Mechanism of fluorescence quenching in solution. Part I. Quenching by bromobenzene, Trans. Faraday Soc. 61:620.

    Article  CAS  Google Scholar 

  • Morgan and Radda, 1974, Unpublished observations.

    Google Scholar 

  • Onsager, L., 1936, Electric moments of molecules in liquids, J. Am. Chem. Soc. 58:1486.

    Article  CAS  Google Scholar 

  • Oster, G., and Nishijima, Y., 1956, Fluorescence and internal rotation: Their dependence on viscosity of the medium, J. Am. Chem. Soc. 78:1581.

    Article  CAS  Google Scholar 

  • Overath, P., and Träuble, H., 1973, Phase transitions in cells, membranes and lipids of Escherichia coli: Detection by fluorescent probes, light scattering, and dilatometry, Biochemistry 12:2625.

    Article  PubMed  CAS  Google Scholar 

  • Pecci, J., and Ulrich, F., 1973, Binding of 8-anilino-1-naphthalene sulfonic acid to viable pulmonary macrophages, Biochim. Biophys. Acta 311:251.

    Article  PubMed  CAS  Google Scholar 

  • Perrin, M. J., 1924, Chimie physique—Loi de Decroissance du pouvoir fluorescent en fonction de la concentration, C. R. Acad. Sci. 178:1978.

    CAS  Google Scholar 

  • Platt, J. R., 1956, Wavelength formulas and configuration interaction in Brooker dyes and chain molecules, J. Chem. Phys. 25:80.

    Article  CAS  Google Scholar 

  • Platt, J. R., 1961, Electrochromism, a possible change of color producible in dyes by an electric field, J. Chem. Phys. 34:862.

    Article  CAS  Google Scholar 

  • Radda, G. K., 1911a, Enzyme and membrane conformation in biochemical control, Biochem. J. 122:385.

    Google Scholar 

  • Radda, G. K., 1971b, The design and use of fluorescent probes for membrane studies, Curr. Top. Bioenerg. 4:81.

    CAS  Google Scholar 

  • Radda, G. K., 1973, Probes for enzyme conformation, in: Fluorescence Techniques in Cell Biology (A. A. Thaer and M. Sernetz, eds.), pp. 261–272, Springer-Verlag, Berlin, Heidelberg, New York.

    Chapter  Google Scholar 

  • Radda, G. K., 1975, Fluorescent probes in membrane studies, Phil. Trans. Roy. Soc. Lond. Ser. B, in press.

    Google Scholar 

  • Radda, G. K., and Smith, D. S., 1970, Retinol: A fluorescent probe for membrane lipids, Fed. Eur. Biochem. Soc. Lett. 9:287.

    Article  CAS  Google Scholar 

  • Radda, G. K., and Smith, D. S., 1973, Human erythrocytes ghosts: Relationship between membrane permeability and binding kinetics of the fluorescent probe 1-anilinonaph-thalene-8-sulphonate, Biochim. Biophys. Acta 318:197.

    Article  PubMed  CAS  Google Scholar 

  • Radda, G. K., and Vanderkooi, J., 1972, Can fluorescent probes tell us anything about membranes, Biochim. Biophys. Acta 265:509.

    Article  CAS  Google Scholar 

  • Reeves, J. P., Shechter, E., Weil, R., and Kaback, H. R., 1973, Dansyl-galactoside, a fluorescent probe of active transport in bacterial membrane vesicles, Proc. Natl. Acad. Sci. U.S.A. 70:2722.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, G. W., and Frosch, R. P., 1963, Electronic excitation transfer and relaxation, J. Chem. Phys. 38:1187.

    Article  CAS  Google Scholar 

  • Rudy, B., and Gitler, C., 1972, Microviscosity of the cell membrane, Biochim. Biophys. Acta 288:231.

    Article  PubMed  CAS  Google Scholar 

  • Sackmann, E., Träuble, H., Galla, H.-J., and Overath, P., 1973, Lateral diffusion, protein mobility, and phase transitions in Escherichia coli membranes, Biochemistry 12:5360.

    Article  PubMed  CAS  Google Scholar 

  • Schuldinger, S., Kerwar, G. K., Weil, R., and Kaback, H. R., 1974, Energy dependent binding of dansylgalactosides to the β-galactoside carrier protein, J. Biol. Chem., in press.

    Google Scholar 

  • Seliskar, C. J., and Brand, L., 1971, Solvent dependence of the luminescence of N-aryl-aminonaphthalenesulphonates, Science 171:799.

    Article  PubMed  CAS  Google Scholar 

  • Seliskar, C. J., Turner, D. C., Gohlke, J. R., and Brand, L., 1969, The ultraviolet absorption and fluorescence properties of N-arylaminonaphthalenesulphonates and related molecules, in: Molecular Luminescence (E. C. Lim, ed.), pp. 677–696, Benjamin, New York, Amsterdam.

    Google Scholar 

  • Shechter, E., Gulik-Krzywicki, T., and Kaback, H. R., 1972, Correlations between fluorescence, X-ray diffraction, and physiological properties in cytoplasmic membrane vesicles isolated from Escherichia coli, Biochim. Biophys. Acta 214:466.

    Google Scholar 

  • Smith, D. S., 1971, Probes for enzyme and membrane structure and function, D. Phil. thesis, Oxford.

    Google Scholar 

  • Strickler, S. J., and Berg, R. A., 1962, Relationship between absorption intensity and fluorescence lifetime of molecules, J. Chem. Phys. 37:814.

    Article  CAS  Google Scholar 

  • Stryer, L., 1959, Intramolecular resonance transfer of energy in proteins, Biochim. Biophys. Acta 35:242-244.

    Article  PubMed  CAS  Google Scholar 

  • Tasaki, I., Carbone, E., Sisco, K., and Singer, I., 1973, Spectral analysis of extrinsic fluorescence of the nerve membrane labelled with aminonaphthalene derivatives, Biochim. Biophys. Acta 323:220.

    Article  PubMed  CAS  Google Scholar 

  • Teale, F. W. J., 1969, Fluorescence depolarisation by light-scattering in turbid solutions, Photochem. Photobiol 10:363.

    Article  PubMed  CAS  Google Scholar 

  • Tedeschi, H., 1974, Mitochondrial membrane potential: Evidence from studies with a fluorescent probe, Proc. Natl. Acad. Sci. U.S.A. 71:583.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, A. J., 1969, Fluorescence spectra of some retinyl polyenes, J. Chem. Phys. 51:4106.

    Article  PubMed  CAS  Google Scholar 

  • Träuble, H., and Overath, P., 1973, The structure of Escherichia coli membranes studied by fluorescence measurements of lipid phase transitions, Biochim. Biophys. Acta 307:491.

    Article  PubMed  Google Scholar 

  • Turner, D. C., and Brand, L., 1968, Quantitative estimation of protein binding site polarity: Fluorescence of N-arylaminonaphthalenesulphonates, Biochemistry 7:3381.

    Article  PubMed  CAS  Google Scholar 

  • Vanderkooi, J., Callis, J., and Chance, B., 1914a, Use of the fluorescent dye, pyrene, to study the dynamic aspects of membrane structure, Histochem. J. 6:301.

    Article  Google Scholar 

  • Vanderkooi, J., Fischkoff, S., Chance, B., and Cooper, R. A., 1974, fluorescent probe analysis of the lipid architecture of natural and experimental cholesterol-rich membranes, Biochemistry 13:1589.

    Article  PubMed  CAS  Google Scholar 

  • Vaughan, W. M., and Weber, G., 1970, Oxygen quenching of pyrenebutyric acid fluorescence in water: A dynamic probe of microenvironment, Biochemistry 9:464.

    Article  PubMed  CAS  Google Scholar 

  • Wahl, P., Kasai, M., and Changeux, J.-P., 1971, A study on the motion of proteins in excitable membrane fragments by nanosecond fluorescence polarization spectroscopy, Eur. J. Biochem. 18:332.

    Article  PubMed  CAS  Google Scholar 

  • Ware, W. R., 1962, Oxygen quenching of fluorescence in solution: An experimental study of the diffusion process, J. Phys. Chem. 66:455.

    Article  CAS  Google Scholar 

  • Ware, W. R., 1973, Techniques for fluorescence lifetime measurements and time-resolved emission spectroscopy, in: Fluorescence Techniques in Cell Biology (A. A. Thaer and M. Sernetz, eds.), pp. 15–27, Springer-Verlag, Berlin, Heidelberg, New York.

    Chapter  Google Scholar 

  • Ware, W. R., Lee, S. K., Brant, G. J., and Chow, P. P., 1971, Nanosecond time-resolved emission spectroscopy: Spectral shifts due to solvent-excited solute relaxation, J. Chem. Phys. 54:4729.

    Article  CAS  Google Scholar 

  • Weber, C., and Young, L. B., 1964, Fragmentation of bovine serum albumin by pepsin, J. Biol. Chem. 239:1415.

    PubMed  CAS  Google Scholar 

  • Weber, G., 1961, Enumeration of components in complex systems by fluorescence spec-trophotometry, Nature 190:27.

    Article  PubMed  CAS  Google Scholar 

  • Weber, G., 1971, Theory of fluorescence depolarization by anisotropic brownian rotations: Discontinuous distribution approach, J. Chem. Phys. 55:2399.

    Article  CAS  Google Scholar 

  • Weber, G., and Bablouzian, B., 1966, Construction and performance of a fluorescence polarization spectrophotometer, J. Biol. Chem. 241:2558.

    PubMed  CAS  Google Scholar 

  • Weber, G., and Teale, F. W. J., 1957, Determination of the absolute quantum yield of fluorescent solutions, Trans. Faraday Soc. 53:646.

    Article  CAS  Google Scholar 

  • Weiler, A., and Zachariasse, K., 1969, Chemiluminescence from radical ion recombination, in: Molecular Luminescence (E. C. Lim, ed.), pp. 895–905, Benjamin, New York, Amsterdam.

    Google Scholar 

  • Whitten, D. G., Happ, J. W., Carlson, G. L. B., and McCall, M. T., 1970, Mechanisms of excited state deactivation: Quenching of excited singlets by nucleophiles, J. Am. Chem. Soc. 92:11.

    Article  Google Scholar 

  • Wu, C. W., and Stryer, L., 1972, Proximity relationships in rhodopsin, Proc. Natl. Acad. Sci. U.S.A. 69:1104.

    Article  PubMed  CAS  Google Scholar 

  • Yguerabide, J., 1972, Nanosecond fluorescence spectroscopy of macromolecules, Methods Enzymol. 26:498.

    Article  PubMed  CAS  Google Scholar 

  • Yguerabide, J., 1973, Nanosecond fluorescence spectroscopy of biological macromolecules and membranes, in: Fluorescence Technique in Cell Biology (A. A. Thaer and M. Sernetz, eds.), pp. 311–331, Springer-Verlag, Berlin, Heidelberg, New York.

    Chapter  Google Scholar 

  • Yguerabide, J., and Stryer, L., 1971, Fluorescence spectroscopy of an oriented model membrane, Proc. Natl. Acad. Sci. U.S.A. 68:1217.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Radda, G.K. (1975). Fluorescent Probes in Membrane Studies. In: Korn, E.D. (eds) Biophysical Approaches. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2907-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2907-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2909-1

  • Online ISBN: 978-1-4684-2907-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics