Techniques in the Formation and Examination of “Black” Lipid Bilayer Membranes

  • R. Fettiplace
  • L. G. M. Gordon
  • S. B. Hladky
  • J. Requena
  • H. P. Zingsheim
  • D. A. Haydon


The importance of lipid bilayers in determining the properties of natural membranes is now generally recognized and this has inevitably aroused the interest of membrane biologists in the preparation and study of such structures under simple and well-defined conditions. The black lipid film is not precisely a lipid bilayer since from the nature of the system in which it is formed, it must, in general, contain some lipid solvent. Nevertheless, this solvent may, if necessary, be reduced to no more than a few percent, and for certain purposes the pure lipid bilayer and the black film may be indistinguishable. This chapter is concerned with black films, but the interrelationships between these membranes and lipid bilayers are not wholly ignored.


Contact Angle Specific Capacitance Lipid Bilayer Membrane Lipid Film Soap Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alamuti, N., and Läuger, P., 1970, Fluorescence of thin chlorophyll membranes in aqueous phase, Biochim. Biophys. Acta 211:362.CrossRefGoogle Scholar
  2. Andreoli, T. E., Schafer, J. A., and Troutman, S. L., 1971, Coupling of solute and solvent flows in porous lipid bilayer membranes, J. Gen. Physiol. 57:479.PubMedCrossRefGoogle Scholar
  3. Andrews, D. M., 1970, Thin lipid films in aqueous media, Ph.D. dissertation, University of Cambridge.Google Scholar
  4. Andrews, D. M., and Haydon, D. A., 1968, Electron microscope studies of lipid bilayer membranes, J. Mol. Biol. 32:149.PubMedCrossRefGoogle Scholar
  5. Andrews, D. M., Manev, E. D., and Haydon, D. A., 1970, Composition and energy relationships for some thin lipid films, and the chain conformation in monolayers at liquid-liquid interfaces, Special Disc. Faraday Soc, No. 1, p. 46.Google Scholar
  6. Aveyard, R., and Haydon, D. A., 1973, An Introduction to the Principles of Surface Chemistry, Cambridge University Press, Cambridge, p. 119.Google Scholar
  7. Bezanilla, F., Rojas, E., and Taylor, R. E., 1970, Sodium and potassium conductance changes during a membrane action potential, J. Physiol. (Lond.) 211:724.Google Scholar
  8. Brooks, J. H., and Pethica, B. A., 1964, Properties of ionized monolayers. Part 6. Film pressures for ionized spread monolayers at the heptane/water interface, Trans. Faraday Soc. 60:208.CrossRefGoogle Scholar
  9. Cass, A., and Finkelstein, A., 1967, Water permeability of thin lipid membranes, J. Gen. Physiol. 50:1765.PubMedCrossRefGoogle Scholar
  10. Cherry, R. J., and Chapman, D., 1969, Optical properties of black lecithin films, J. Mol. Biol. 40:19.PubMedCrossRefGoogle Scholar
  11. Cherry, R. J., Hsu, K., and Chapman, D., 1972, Structure and reflection spectra of chloro-phyll-lipid membranes, Biochim. Biophys. Acta 288:12.PubMedCrossRefGoogle Scholar
  12. Clint, J. H., Clunie, J. S., Goodman, J. F., and Tate, J. R., 1969, Direct measurement of the tensions of liquid films in air, Nature (Lond.) 223:291.CrossRefGoogle Scholar
  13. Conti, F., and Malerba, F., 1972, Fluorescence signals of ANS-stained lipid bilayers under applied potentials, Biophysik 8:326.PubMedCrossRefGoogle Scholar
  14. Cook, G. M. W., Redwood, W. R., Taylor, A. R., and Haydon, D. A., 1968, The molecular composition of black hydrocarbon films in aqueous solutions, Kolloid-Z. 227:28.CrossRefGoogle Scholar
  15. Dainty, J., 1963, Water relations of plant cells, Adv. Bot. Res. 1:279.CrossRefGoogle Scholar
  16. de Feijter, J. A., 1973, Contact angles in soap films, Ph.D. dissertation, University of Utrecht.Google Scholar
  17. de Feijter, J. A., and Vrij, A., 1972, Transition regions, line tensions and contact angles in soap films, Electroanal. Chem. 37:9.CrossRefGoogle Scholar
  18. de Vries, A. J., 1958a, Foam stability. IV. Kinetics and activation energy of film rupture, Rec. Trav. Chim. 77:383.CrossRefGoogle Scholar
  19. de Vries, A. J., 1958b, Foam stability. V. Mechanisms of film rupture, Rec. Trav. Chim. 77:441.CrossRefGoogle Scholar
  20. Eisenberg, M., Hall, J. E., and Mead, C. A., 1973, The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes, J. Membrane Biol. 14:143.CrossRefGoogle Scholar
  21. Everitt, C. T., and Haydon, D. A., 1968, Electrical capacitance of a lipid membrane separating two aqueous phases, J. Theoret. Biol. 18:371.CrossRefGoogle Scholar
  22. Everitt, C. T., and Haydon, D. A., 1969, Influence of diffusion layers during osmotic flow across bimolecular lipid membranes, J. Theoret. Biol. 22:9.CrossRefGoogle Scholar
  23. Everitt, C. T., Redwood, W. R., and Haydon, D. A., 1969, Problem of boundary layers in the exchange diffusion of water across bimolecular lipid membranes, J. Theoret. Biol. 22:20.CrossRefGoogle Scholar
  24. Ewers, W. E., and Sutherland, K. L., 1952, Role of surface transport in the stability and breakdown of foams, Austral. J. Sci. Res. A 5:697.Google Scholar
  25. Fettiplace, R., 1974, Physicochemical studies on thin lipid membranes, Ph.D. dissertation, University of Cambridge.Google Scholar
  26. Fettiplace, R., Andrews, D. M., and Haydon, D. A., 1971, The thickness, composition and structure of some lipid bilayers and natural membranes, J. Membrane Biol. 5:277.CrossRefGoogle Scholar
  27. Finkelstein, A., and Cass, A., 1967, Effect of cholesterol on the water permeability of thin lipid membranes, Nature (Lond.) 216:717.CrossRefGoogle Scholar
  28. Förster, T., 1951, Fluoreszenz organischer Verbindungen, Vandenhoeck and Ruprecht, Göttingen.Google Scholar
  29. French, C. S., 1960, The chlorophylls in vivo and in vitro. II. Fluorescence of isolated Chlorophylls, in: Handbuch der Pflanzenphysiologie, Vol. 5, Part I, p. 282, Springer, Berlin.Google Scholar
  30. Goldup, A., Ohki, S., and Danielli, J. F., 1970, Black lipid films, in: Recent Progress in Surface Science, Vol. 3 (J. F. Danielli, A. C. Riddiford, and M. D. Rosenberg, eds.), p. 193, Academic Press, New York and London.Google Scholar
  31. Gordon, L. G. M., and Haydon, D. A., 1972, The unit conductance channel of alamethicin, Biochim. Biophys. Acta 255:1014.PubMedCrossRefGoogle Scholar
  32. Gulik-Krzywicki, T., Shechter, E., Iwatsubo, M., Rank, J. L., and Luzzati, V., 1970, Correlations between structure and spectroscopic properties in membrane model Systems. Tryptophan and 1-anilino-8-naphthalene sulfonate fluorescence in protein-lipid-water phases, Biochim. Biophys. Acta 219:1.PubMedCrossRefGoogle Scholar
  33. Hanai, T., and Haydon, D. A., 1966, The permeability to water of bimolecular lipid membranes, J. Theoret. Biol. 11:370.CrossRefGoogle Scholar
  34. Hanai, T., Haydon, D. A., and Redwood, W. R., 1966, The water permeability of artificial bimolecular leaflets: A comparison of radio-tracer and osmotic methods, Ann. N.Y. Acad. Sci. 137:731.PubMedCrossRefGoogle Scholar
  35. Hanai, T., Haydon, D. A., and Taylor, J., 1964, An investigation by electrical methods of lecithin-in-hydrocarbon films in aqueous solutions, Proc. Roy. Soc. A 281:377.CrossRefGoogle Scholar
  36. Hanai, T., Haydon, D. A., and Taylor, J., 1965a, Polar group orientation and the electrical properties of lecithin bimolecular leaflets, J. Theoret. Biol. 9:278.CrossRefGoogle Scholar
  37. Hanai, T., Haydon, D. A., and Taylor, J., 1965b, The influence of lipid composition and of some adsorbed proteins on the capacitance of black hydrocarbon membranes, J. Theoret. Biol. 9:422.CrossRefGoogle Scholar
  38. Hanai, T., Haydon, D. A., and Taylor, J., 1965c, Some further experiments on bimolecular lipid membranes, J. Gen. Physiol. 48:59.PubMedCrossRefGoogle Scholar
  39. Haydon, D. A., 1968, Properties of lipid bilayers at a water-water interface, J. Am. Oil. Chem. Soc. 45:230.PubMedCrossRefGoogle Scholar
  40. Haydon, D. A., and Taylor, J., 1968, Contact angles for thin lipid films and the determination of London-van der Waals forces. Nature (Lond.) 217:739.CrossRefGoogle Scholar
  41. Haynes, D. H., 1972, Detection of ionophore-cation complexes on phospholipid membranes, Biochim. Biophys. Acta 255:406.PubMedCrossRefGoogle Scholar
  42. Hladky, S. B., and Haydon, D. A., 1972, Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel, Biochim. Biophys. Acta 274:294.PubMedCrossRefGoogle Scholar
  43. Hodgkin, A. L., Huxley, A. F., and Katz, B., 1952, Measurement of current-voltage relations in the membrane of the giant axon of Loligo, J. Physiol. (Lond.) 116:424.Google Scholar
  44. Holz, R., and Finkelstein, A., 1970, The water and non-electrolyte permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B, J. Gen. Physiol. 56:125.PubMedCrossRefGoogle Scholar
  45. Huang, C., and Thompson, T. E., 1966, Properties of lipid bilayer membranes separating two aqueous phases: Water permeability, J. Mol. Biol. 15:539.PubMedCrossRefGoogle Scholar
  46. Kedem, O., and Katchalsky, A., 1958, Thermodynamic analysis of the permeability of biological membranes to non-electrolytes, Biochim. Biophys. Acta 27:229.PubMedCrossRefGoogle Scholar
  47. Kedem, O., and Katchalsky, A., 1963, Permeability of composite membranes. Part 3. Series array of elements, Trans. Faraday Soc. 59:1941.CrossRefGoogle Scholar
  48. Kitchener, J. A., and Cooper, C. F., 1959, Current concepts in the theory of foaming, Quart. Rev. Chem. Soc. (Lond.) 13:71.CrossRefGoogle Scholar
  49. Kolarov, T., Scheludko, A., and Exerowa, D., 1968, Contact angle between black film and bulk liquid, Trans. Faraday Soc. 64:2864.CrossRefGoogle Scholar
  50. Kruglyakov, P. M., Rovin, Y. G., and Koretskii, A. F., 1972, Black hydrocarbon films in aqueous media. I. Intermolecular interaction and contact angles, Izvest. Sibirsk. Otdel. Akad. Nauk SSSR Ser. Khim. Nauk, No. 1, p. 11.Google Scholar
  51. Landolt, H. H., and Börnstein, R., 1959, Zahlenworte und Funktionen, Vol. II, No. 6, Springer, Berlin.Google Scholar
  52. Langmuir, I., and Waugh, D. F., 1938, The adsorption of proteins at oil-water interfaces and artificial protein-lipoid membranes, J. Gen. Physiol. 21:745.PubMedCrossRefGoogle Scholar
  53. Läuger, P., Lesslauer, W., Marti, E., and Richter, J., 1967, Electrical properties of bimolecular phospholipid membranes, Biochim. Biophys. Acta 135:20.PubMedCrossRefGoogle Scholar
  54. Lea, E. J. A., and Gulik-Krzywicki, T., 1972, Fluorescence in bimolecular phospholipid membranes, Nature (Lond.) 237:95.CrossRefGoogle Scholar
  55. Mackor, E. L., and van der Waals, J. H., 1952, The statistics of the adsorption of rod shaped molecules in connection with the stability of certain colloidal dispersions, J. Colloid Sci. 7:535.CrossRefGoogle Scholar
  56. Montai, M., and Mueller, P., 1972, Formation of bimolecular membranes from lipid monolayers, and a study of their electrical properties, Proc. Natl. Acad. Sci. 69:3561.CrossRefGoogle Scholar
  57. Moore, J. W., and Cole, K. S., 1963, Voltage clamp techniques, in: Physical Techniques in Biological Research, Vol. VI (W. L. Nastuk, ed.), pp. 263–321, Academic Press, New York and London.Google Scholar
  58. Mueller, P., Rudin, D. O., Tien, H. T., and Wescott, W. C., 1962, Reconstitution of cell membrane structure in vitro and its transformation into an excitable system, Nature (Lond.) 194:979.CrossRefGoogle Scholar
  59. Mysels, K. J., Shinoda, K., and Frankel, S., 1959, Soap Films, Pergamon Press, London, New York, Paris, Los Angeles.Google Scholar
  60. Mysels, K. J., Huisman, H. F., and Razouk, R. I., 1966, Measurement of contact angle between thin film and bulk of same liquid, J. Phys. Chem. 70:1339.CrossRefGoogle Scholar
  61. Pagano, R., and Thompson, T. E., 1967, Spherical lipid bilayer membranes, Biochim. Biophys. Acta 144:666.PubMedCrossRefGoogle Scholar
  62. Pagano, R., Ruysschaert, J. M., and Miller, I. R., 1972, The molecular composition of some lipid bilayer membranes in aqueous solution, J. Membrane Biol. 10:11.CrossRefGoogle Scholar
  63. Pohl, G. W., 1972, Energy transfer in black lipid membranes, Biochim. Biophys. Acta 288:248.PubMedCrossRefGoogle Scholar
  64. Princen, H. M., 1968, Contact angle and transition region in soap films, J. Phys. Chem. 72:3342.CrossRefGoogle Scholar
  65. Princen, H. M., and Frankel, S., 1971, Contact angles in soap films from diffraction of light traversing a Plateau border, J. Colloid Interface Sci. 35:386.CrossRefGoogle Scholar
  66. Prins, A., 1969, Contact angle in thin liquid film, J. Colloid Interface Sci. 29:177.CrossRefGoogle Scholar
  67. Requena, J., 1974, Contact angles of thin lipid films, Ph.D. dissertation, University of Cambridge.Google Scholar
  68. Robinson, R. A., and Stokes, R. H., 1959, Electrolyte Solutions, Butterworths, London.Google Scholar
  69. Scheludko, A., 1967, Thin liquid films, Advan. Colloid Interface Sci. 1:391.CrossRefGoogle Scholar
  70. Scheludko, A., Radoev, B., and Kolarov, T., 1968, Tension of liquid films and contact angles between film and bulk liquid, Trans. Faraday Soc. 64:2213.CrossRefGoogle Scholar
  71. SGS-Fairchild (London), 1967, The Application of Linear Microcircuits, p. 110.Google Scholar
  72. Stark, G., Benz, R., Pohl, G. W., and Janko, K., 1972, Valinomycin as a probe for the study of structural changes of black lipid membranes, Biochim. Biophys. Acta 266:603.PubMedCrossRefGoogle Scholar
  73. Steinemann, A., and Läuger, P., 1971, Interaction of cytochrome C with phospholipid monolayers and bilayer membranes, J. Membrane Biol. 4:74.CrossRefGoogle Scholar
  74. Steinemann, A., Alamuti, N., Brodmann, W., Marschall, O., and Läuger, P., 1971, Optical properties of artificial chlorophyll membranes, J. Membrane Biol. 4:284.CrossRefGoogle Scholar
  75. Stryer, L., 1965, The interaction of a naphthalene dye with apomyoglobin and apohemoglobin: A fluorescent probe of non-polar binding sites, J. Mol. Biol. 13:482.PubMedCrossRefGoogle Scholar
  76. Szabo, G., Eisenman, G., and Ciani, S., 1969, The effects of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes, J. Membrane Biol. 1:346.CrossRefGoogle Scholar
  77. Takashima, S., Schwan, H. P., and Mueller, P., 1973, Dielectric relaxation in lipid bilayer membranes, American Chemical Society Division of Colloid and Surface Chemistry, Abstracts of 166th National Meeting, Paper No. 51.Google Scholar
  78. Taylor, J., and Haydon, D. A., 1966, Stabilization of thin films of liquid hydrocarbon by alkyl chain interaction, Disc. Faraday Soc, No. 42, p. 51.Google Scholar
  79. Tien, H. T., and Dawidowicz, E. A., 1966, Black lipid films in aqueous media: A new type of interfacial phenomena. Experimental techniques and thickness measurements, J. Colloid Interface Sci. 22:438.CrossRefGoogle Scholar
  80. Tien, H. T., and Diana, A. L., 1967, Black lipid membranes in aqueous media: The effect of salts on electrical properties. J. Colloid Interface Sci. 24:287.PubMedCrossRefGoogle Scholar
  81. Tien, H. T., and Howard, R. E., 1972, Bimolecular lipid membranes, in: Techniques of Surface and Colloid Chemistry and Physics (R. J. Good, R. R. Stromberg, and R. L. Patrick, eds.), pp. 109–211, Dekker, New York.Google Scholar
  82. Tien, H. T., Carbone, S., and Dawidowicz, E. A., 1966, Formation of black lipid membranes by oxidation products of cholesterol, Nature (Lond.) 212:718.CrossRefGoogle Scholar
  83. Trosper, T., 1972, Some properties of chlorophyll a at hydrocarbon-water interfaces and in black lipid membranes, J. Membrane Biol. 8:133.CrossRefGoogle Scholar
  84. Trosper, T., Park, R. B., and Sauer, K., 1968, Excitation transfer by chlorophyll a in monolayers and the interaction with chloroplast glycolipids, Photochem. Photobiol. 7:451.PubMedCrossRefGoogle Scholar
  85. Vreeman, H. J., 1966, Permeability of thin phospholipid films. III, Proc. Koninkl. Nederl. Akad. Wetenschappen-Amsterdam B69:564.Google Scholar
  86. Vrij, A., 1966, Possible mechanisms for the spontaneous rupture of thin, free liquid films, Disc. Faraday Soc. 42:23.CrossRefGoogle Scholar
  87. White, S. H., 1970, A study of lipid bilayer membrane stability using precise measurements of specific capacitance, Biophys. J. 10:1127.PubMedCrossRefGoogle Scholar
  88. White, S. H., 1973, The surface charge and double layers of thin lipid films formed from neutral lipids, Biochim. Biophys. Acta 323:343.PubMedCrossRefGoogle Scholar
  89. White, S. H., and Thompson, T. E., 1973, Capacitance, area, and thickness variations in thin lipid films, Biochim. Biophys. Acta 323:7.PubMedCrossRefGoogle Scholar
  90. Yguerabide, J., and Stryer, L., 1971, Fluorescence spectroscopy of an oriented model membrane, Proc. Natl. Acad. Sci. 68:1217.PubMedCrossRefGoogle Scholar
  91. Zingsheim, H. P., and Haydon, D. A., 1973, Fluorescence spectroscopy of planar black lipid membranes: Probe adsorption and quantum yield determination, Biochim. Biophys. Acta 298:755.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • R. Fettiplace
    • 1
  • L. G. M. Gordon
    • 1
  • S. B. Hladky
    • 1
  • J. Requena
    • 1
  • H. P. Zingsheim
    • 1
  • D. A. Haydon
    • 1
  1. 1.Physiological LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations