Advertisement

Clonal Lines of Glial Cells

  • S. E. Pfeiffer
Part of the Current Topics in Neurobiology book series (CTNB)

Abstract

Extrapolations from gross brain biochemical studies to nervous system function at the cellular level have been extremely difficult because of the complex interrelationships among a variety of neuronal and glial cell types. As a result, numerous attempts have been made to separate the cell types prior to biochemical analysis. For example, Lowry (1953), Hydén (1959), and Hamberger (1963) have hand-dissected glia from neurons in order to study their metabolic relationships, and Roots and Johnston (1965) have used a “sieving-fishing” method for their studies. However, although useful cell separations can be achieved this way, the yields are necessarily low. More recently, a variety of gradient centrifugation methods producing larger quantities of cells have been developed for preparing brain fractions enriched for neurons (Bocci, 1966; Satake and Abe, 1966; Satake et al., 1968; Flangas and Bowman, 1968; Sellinger et al., 1971), glia (Korey et al., 1958; Fewster et al., 1967), or both (Rose, 1967, 1969; Rose and Sinha, 1969; Freysz et al., 1968; Blomstrand and Hamberger, 1969; Norton and Poduslo, 1970). However, although these preparations have yielded valuable biochemical information, the enrichments are only partial and the cell viability is uncertain, thus precluding many important experiments.

Keywords

Schwann Cell S100 Protein Myelin Basic Protein Experimental Allergic Encephalomyelitis Clonal Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, C. W. M., and Leibowitz, S. 1969. The general pathology of demyelinating disease, pp. 309–382. In G. Bourne (ed.). The Structure and Function of the Nervous System, Vol. 3 Academic Press, New York.Google Scholar
  2. Agrawal, H. C., Banik, N. L., Bone, A. H., Davison, A. N., Mitchell, R. F., and Spohn, M. 1970. The identity of a myelin-like fraction isolated from developing brain. Biochem. J. 120:635–642.PubMedGoogle Scholar
  3. Alvord, E. C., Jr. 1968. The etiology and pathogenesis of experimental allergic encephalomyelitis, pp. 52–70. In O. T. Bailey and D. E. Smith (eds.). The Central Nervous System. Williams & Wilkins, Baltimore.Google Scholar
  4. Appel, S. H., and Bornstein, M. B. 1964. The application of tissue culture to the study of experimental allergic encephalomyelitis, II. J. Exptl. Med. 119:303–312.Google Scholar
  5. Arnason, B. G. W. 1969. Idiopathic polyneuritis and experimental allergic encephalomyelitis. A comparison, pp. 156–177. In L. P. Rowland (ed.). Immunologic Disorders of the Nervous System. Williams & Wilkins, Baltimore.Google Scholar
  6. Augusti-Tocco, G., and Sato, G. 1969. Establishment of functional clonal lines of neurons from mouse neuroblastoma. Proc. Natl. Acad. Sci. 64:311–315.PubMedGoogle Scholar
  7. Bailey, P., and Herrmann, J. D. 1938. Role of cells of Schwann in formation of tumors of peripheral nerves. Am. J. Pathol. 14:1–38.PubMedGoogle Scholar
  8. Benda, P. 1968a. Protéine S100 et cellules gliales du rat. Rev. Neurol. 118:364–367.PubMedGoogle Scholar
  9. Benda, P. 1968b. Protéine S100 et turners cérébrales humaines. Rev. Neurol. 118:368–372.PubMedGoogle Scholar
  10. Benda, P., Lightbody, J., Sato, G., Levine, L., and Sweet, W. 1968. Differentiated rat glial cell strain in tissue culture. Science 161:370–371.PubMedGoogle Scholar
  11. Berg, O., and Källen, B. 1962. An in vitro gliotoxic effect of serum from animals with experimental allergic encephalomyelitis. Acta Pathol. Microbiol. Scand. 54:425–433.PubMedGoogle Scholar
  12. Blomstrand, C., and Hamberger, A. 1969. Protein turnover in cell-enriched fractions from rabbit brain. J. Neurochem. 16:1401–1407.PubMedGoogle Scholar
  13. Blume, A., Gilbert, F., Wilson, S., Farber, J., Rosenberg, R. N., and Nirenberg, M. 1970. Regulation of acetylcholinesterase in neuroblastoma cells. Proc. Natl. Acad. Sci. 67:786–792.PubMedGoogle Scholar
  14. Bocci, V. 1966. Enzyme and metabolic properties of isolated neurones. Nature 212:826–827.Google Scholar
  15. Bornstein, M. B. 1963. A tissue culture approach to demyelinative disorders. Natl. Cancer Inst. Monogr., No. 11, pp. 197–211.PubMedGoogle Scholar
  16. Bornstein, M. B., and Appel, S. H. 1961. The application of tissue culture to the study of experimental“allergic” encephalomyelitis. I. Patterns of demyelination. J. Neuropathol. Exptl. Neurol. 20:141–147.Google Scholar
  17. Bornstein, M. B., and Murray, M. R. 1958. Serial observations on patterns of growth, myelin formation, maintenance and degeneration in cultures of new-born rat and kitten cerebellum. J. Biophys. Biochem. Cytol. 4:499–504.PubMedGoogle Scholar
  18. Bornstein, M. B., and Raine, C. S. 1970. Experimental allergic encephalomyelitis. Antiserum inhibition of myelination in vitro. Lab. Invest. 23:536–542.PubMedGoogle Scholar
  19. Brostoff, S. 1972. Winter Conference on Brain Research. BIS Conference Report No. 20, p. 43.Google Scholar
  20. Brostoff, S., Burnett, P., Lampert, P., and Eylar, E. H. 1972. Isolation and characterization of a protein from sciatic nerve myelin responsible for experimental allergic neuritis. Nature New Biol. 235:210–212.PubMedGoogle Scholar
  21. Bunge, R. P. 1971. Myelin degeneration in tissue culture. Neurosci. Res. Progr. Bull. 9: 496–498.Google Scholar
  22. Buonassisi, V., Sato, G., and Cohen, A. J. 1962. Hormone producing cultures of adrenal and pituitary tumor origin. Proc. Natl. Acad. Sci. 48:1184–1190.PubMedGoogle Scholar
  23. Calissano, P., and Bangham, A. D. 1971. Effect of two brain specific proteins (S100 and 14.3.2) on cation diffusion across artificial lipid membranes. Biochem. Biophys. Res. Commun. 43:504–509.PubMedGoogle Scholar
  24. Calissano, P., Moore, B. W., and Friesen, A. 1969. Effect of calcium on S100, a protein of the nervous system. Biochemistry 8:4318–4326.PubMedGoogle Scholar
  25. Carnegie, P. R., and Baldwin, G. S. 1971. Specific enzymic methylation of an arginine in the experimental allergic encephalomyelitis protein from human myelin. Science 171: 579–581.PubMedGoogle Scholar
  26. Carnegie, P. R., and Lumsden, C. E. 1967. Fractionation of encephalitogenic polypeptides from bovine spinal cord by gel filtration in phenol-acetic acid-water. Immunology 12: 133–145.PubMedGoogle Scholar
  27. Carnegie, P. R., Bencina, B., and Lamoureau, G. 1967. Experimental allergic encephalomyelitis. Biochem. J. 105:559–568.PubMedGoogle Scholar
  28. Church, R. L., Tanzer, M. L., and Pfeiffer, S. E. 1973. Procollagen and collagen synthesis by a clonal line of rat Schwann cells. Proc. Natl. Acad. Sci. 70:1943–1946.PubMedGoogle Scholar
  29. Cicero, T. J., Cowan, W. M., Moore, B. W., and Suntzeff, V. 1970. The cellular localization of the two brain specific proteins, SlOO and 14-3-2. Brain Res. 18:25–34.PubMedGoogle Scholar
  30. Clark, R. B., and Perkins, J. P. 1971. Regulation of adenosine 3′,5′-cyclic monophosphate concentration in cultured human astrocytoma cells by catecholamines and histamine. Proc. Natl. Acad. Sci. 68:2757–2760.PubMedGoogle Scholar
  31. Cox, L. B., and Cranage, M. L. 1937. Studies on the tissue culture of intracranial tumors. J. Pathol. Bacteriol. 45:477–499.Google Scholar
  32. Cravioto, H. 1969. The ultrastructure of acoustic nerve tumors. Acta Neuropathol. 12: 116–140.PubMedGoogle Scholar
  33. Cravioto, H., and Lockwood, R. 1969. The behavior of acoustic neuroma in tissue culture. Acta neuropathol. (Berl.) 12:141–157.Google Scholar
  34. Cuzner, M. L., and Davison, A. N. 1968. The lipid composition of rat brain myelin and subcellular fractions during development. Biochem. J. 106:29–34.PubMedGoogle Scholar
  35. Davison, A. N. 1971. Myelinogenesis. Chemical aspects. Neurosci. Res. Progr. Bull. 9: 465–470.Google Scholar
  36. Druckrey, H., Ivankovic, S., and Preussman, R. 1965. Selektive Erzeugung maligner Tumoren im Gehirn and Rükenmark von Ratten durch N-Methyl-N-nitroscharnstoff. Z. Krebsforsch. 66:389–408.PubMedGoogle Scholar
  37. Druckrey, H., Ivankovic, S., and Preussman, R. 1966. Teratogenic and carcinogenic effects in the offspring after single injection of ethylnitrosourea to pregnant rats. Nature 210:1378–1379.PubMedGoogle Scholar
  38. Druckrey, H., Preussman, R., Ivankovic, S., and Schmähl, D. 1967. Organotrope carcinogene Wirkungen bei 65 verschiedenen N-Nitroso-Verbindungen an BD-Ratten. Z. Krebsforsch. 69:103–201.PubMedGoogle Scholar
  39. Druckrey, H., Ivankovic, S., Preussman, R., Zülch, K. J., and Mennel, H. D. 1972. Selective induction of malignant tumors of the nervous system by resorptive carcinogens, pp. 85–147. In The Experimental Biology of Brain Tumors, Thomas, Springfield, Ill.Google Scholar
  40. Drummond, G. I., Iyer, N. T., and Keith, J. 1962. Hydrolysis of ribonucleoside 2′, 3′-cyclic phosphates by a diesterase from brain. J. Biol. Chem. 237:3535–3539.Google Scholar
  41. Einstein, E. R., Robertson, D. M., Di Caprio, J., and Moore, W. 1962. The isolation from bovine spinal cord of a homogeneous protein with encephalitogenic activity. J. Neurochem. 9:353–361.PubMedGoogle Scholar
  42. Eng, L., Chao, F., Gerstl, B., Pratt, D., and Tavaststjerna, M. 1968. The maturation of human white matter myelin. Fractionation of the myelin membrane proteins. Biochemistry 7:4455–4465.PubMedGoogle Scholar
  43. Eylar, E. H. 1970. Amino acid sequence of the basic protein of the myelin membrane. Proc. Natl. Acad. Sci. 67:1425–1431.PubMedGoogle Scholar
  44. Eylar, E. H., Salk, J., Beveridge, G., and Brown, L. 1969. Experimental allergic encephalomyelitis. Arch. Biochem. Biophys. 132:34–48.PubMedGoogle Scholar
  45. Eylar, E. H., Caccam, J., Jackson, J. J., Westall, F., and Robinson, A. B. 1970. Experimental allergic encephalomyelitis: Synthesis of disease-inducing site of basic protein. Science 168:1220–1223.PubMedGoogle Scholar
  46. Fewster, M. E., Scheibel, A. B., and Mead, J. F. 1967. The preparation of glial cells from rat and bovine white matter. Brain Res. 6:401–408.PubMedGoogle Scholar
  47. Fisher, H. W., Puck, T. T., and Sato, G. 1958. Molecular growth requirements of single mammalian cells. The action of fetuin in promoting cell attachment to glass. Proc. Natl. Acad. Sci. 44:4–10.PubMedGoogle Scholar
  48. Fisher, H. W., Puck, T. T., and Sato, G. 1959. Molecular growth requirements of single mammalian cells, III. J. Exptl. Med. 109:649–659.Google Scholar
  49. Flangas, A. L., and Bowman, R. E. 1968. Neuronal perikarya of rat brain isolated by zonal centrifugation. Science 161:1025–1027.PubMedGoogle Scholar
  50. Freeman, A. A., Ward, T. G., and Wolford, R. G. 1964. A simplified method for the cloning of heteroploid and diploid mammalian cells. Proc. Soc. Exptl. Biol. 116: 339–343.Google Scholar
  51. Freysz, L., Bieth, R., Judes, C., Sensenbrenner, M., Jacog, M., and Mandel, P. 1968. Distribution quanitative des divers phospholipides dans les neurons et les cellules gliales isoles du cortex cerebral de rat adulte. J. Neurochem. 15:307–313.PubMedGoogle Scholar
  52. Fry, J. M., Lehrer, G. M., and Bornstein, M. B. 1971. Abst. Papers 11th Ann. Meet. Am. Soc. Cell. Biol., New Orleans, Nov. 17-20, 1971. Abst. No. 183, p. 96.Google Scholar
  53. Furmanski, P., Silverman, D. J., and Lubin, M. 1971. Expression of differentiated functions in mouse neuroblastoma mediated by dibutyryl-cyclic adenosine monophosphate. Nature 233:413–415.PubMedGoogle Scholar
  54. Furth, J. 1968. Hormones and neoplasia, pp. 131–151. In A. Engel, and T. Larsson, (eds.). Thule International Symposium on Cancer and Aging. Nordiska Bokhandelus Förlieg, Stockholm.Google Scholar
  55. Geren, B. B. 1954. The formation from the Schwann cell surface of myelin in the peripheral nerves of chick embryos. Exptl. Cell Res. 7:558–562.Google Scholar
  56. Gilman, A. G., and Nirenberg, M. 1971a. Regulation of adenosine 3′,5′-cyclic monophosphate metabolism in cultured neuroblastoma cells. Nature 234:356–357.PubMedGoogle Scholar
  57. Gilman, A. G., and Nirenberg, M. 1971b. Effect of catecholamines on the adenosine 3′,5′-cyclic monophosphate concentrations of clonal satellite cells of neurons. Proc. Natl. Acad. Sci. 68:2165–2168.PubMedGoogle Scholar
  58. Glastris, B., and Pfeiffer, S. E. 1973. Mammalian membrane marker enzymes: Sensitive assay for 5′-nucleotidase and assay for mammalian 2′,3′-cyclic-nucleotide-3′-phosphohydrolase. In S. Fleischer, L. Packer, and R. W. Estabrook (eds.). Methods in Enzymology—Biomembranes, Chap. VII. 15, Academic Press, New York (in press).Google Scholar
  59. Green, H., and Goldberg, B. 1965. Synthesis of collagen by mammalian cell lines of fibroblastic and nonfibroblastic origin. Proc. Natl. Acad. Sci. 53:1360–1365.PubMedGoogle Scholar
  60. Haglid, K. G., and Carlsson, C. A. 1971. An immunological study of some human brain tumors concerning the brain specific protein S100. Neurochirurgia 14:24–27.PubMedGoogle Scholar
  61. Hallpike, J. F., and Adams, C. W. M. 1969. Proteolysis and myelin breakdown: A review of recent histochemical and biochemical studies. Histochem. J. 1:559–578.PubMedGoogle Scholar
  62. Hamberger, A. 1963. Difference between isolated neuronal and vascular glia with respect to respiratory activity. Acta Physiol. Scand. 58:1–58 (Suppl. 203).Google Scholar
  63. Hashim, G. A., and Eylar, E. H. 1969. Allergic encephalomyelitis: Isolation and characterization of encelphalitogenic peptides from the basic protein of bovine spinal cord. Arch. Biochem. Biophys. 129:645–654.PubMedGoogle Scholar
  64. Henn, F. A., and Hamberger, A. 1971. Glial cell function: Uptake of transmitter substances. Proc. Natl. Acad. Sci. 68:2686–2690.PubMedGoogle Scholar
  65. Herschman, H. R. 1971. Synthesis and degradation of a brain specific protein (S100 protein) by cloned cultured human glial cells. J. Biol. Chem. 246:7569–7571.PubMedGoogle Scholar
  66. Hydén, H. 1959. Quantitative assay of compounds in isolated, fresh nerve cells and glial cells from control and stimulated animals. Nature 184:433–435.PubMedGoogle Scholar
  67. Hydén, H., and McEwen, B. S. 1966. A glial protein specific for the nervous system. Proc. Natl. Acad. Sci. 55:354–358.PubMedGoogle Scholar
  68. Kabat, E. A., Wolf, A., and Bezer, A. 1947. The rapid production of acute disseminated encephalomyelitis in rhesus monkeys by injection of heterologous and homologous brain tissue with adjuvants. J. Exptl. Med. 85:117–129.Google Scholar
  69. Kates, J. R., Winterton, R., and Schlessinger, K. 1971. Induction of acetylcholinesterase activity in mouse neuroblastoma tissue culture cells. Nature 229:345–347.PubMedGoogle Scholar
  70. Kessler, D., Levine, L., and Fasman, G. D. 1968. Some conformational and immunological properties of a bovine brain acidic protein. Biochemistry 7:758–764.PubMedGoogle Scholar
  71. Kies, M. W. 1965. Chemical studies on an encephalitogenic protein from guinea pig brain. Ann. N.Y. Acad. Sci. 122:161–170.Google Scholar
  72. Koelle, G. B. 1955. The histochemical identification of acetylcholinesterase in cholinergic, adrenergic and sensory neurons. J. Pharmacol. Exptl. Therap. 114:167–184.Google Scholar
  73. Koestner, A., Swenberg, J. A., and Wechsler, W. 1971. Transplacental production with ethylnitrosourea of neoplasms of the nervous system in Sprague-Dawley rats. Am. J. Pathol. 63:37–50.PubMedGoogle Scholar
  74. Koestner, A., Swenbert, J. A., and Wechsler, W. 1972. Experimental tumors of the nervous system induced by resorptive N-nitroso-urea compounds, pp. 9–30. In W. G. Bingham (ed.). Progress in Experimental Tumor Research, Vol. 17. Karger, Basel.Google Scholar
  75. Kaprowski, H., and Fernandez, M. V. 1962. Autosensitization reaction in vitro. J. Exptl. Med. 116:467–476.Google Scholar
  76. Korey, S. R., Orchen, M., and Brotz, M. 1958. Study of white matter, I. J. Neuropathol. Exptl. Neurol. 17:430–438.Google Scholar
  77. Kuffler, S. W., and Nicholls, J. G. 1966. The physiology of neuroglial cells. Ergeb. Physiol. Biol. Chem. Exptl. 57:1–90.Google Scholar
  78. Kurihara, T., and Tsukada, Y. 1967. The regional and subcellular distribution of 2′, 3′-cyclic nucleotide 3′-phosphohydrolase in the central nervous system. J. Neurochem. 14:1167–1174.PubMedGoogle Scholar
  79. Kurihara, T., and Tsukada, Y. 1968. 2′, 3′-Cyclic nucleotide 3′-phosphohydrolase in the developing chick brain and spinal cord. J. Neurochem. 15:827–832.PubMedGoogle Scholar
  80. Kurihara, T., Nussbaum, L., and Mandel, P. 1969. 2′3′-Cyclic nucleotide 3′-phosphohydrolase in the brain of the“Jimpy” mouse, a mutant with deficient myelination. Brain Res. 13:401–403.PubMedGoogle Scholar
  81. Kurihara, T., Nussbaum, L., and Mandel, P. 1970. 2′-3′-Cyclic nucleotide 3′-phosphohydrolase in brains of mutant mice with deficient myelination. J. Neurochem. 17:993–997.PubMedGoogle Scholar
  82. Kurihara, T., Nussbaum, J. L., and Mandel, P. 1971. 2′-3′-Cyclic nucleotide 3′-phosphohydrolase in purified myelin from brain of“Jimpy” and normal young mice. Life Sci. 10:421–429 (Part II).Google Scholar
  83. Laatsch, R. H., Kies, M. W., Gordon, S., and Alvord, E. C., Jr. 1962. The encephalitogenic activity of myelin isolated by ultracentrifugation. J. Exptl. Med. 115:777–788.Google Scholar
  84. Levine, L. 1967a. Microcomplement fixation, pp. 709–719. In D. M. Weir (ed.). Handbook of Experimental Immunochemistry. Blackwell Scientific Publications, Oxford.Google Scholar
  85. Levine, 1967b. Immunochemical approaches to the study of the nervous system, pp. 220–230. In G. C. Quarton, T. Melnechuk, and F. O. Schmitt (eds.). The Neurosciences. Rockefeller University Press, New York.Google Scholar
  86. Levine, L., and Moore, B. W. 1966. Structural relatedness of a vertebrate brain acidic protein as measured immunologically, pp. 454–458. In F. O. Schmitt and T. Melnechuk (eds.). Neurosciences Research Symposium Summaries, Vol. 1. Press, Cambridge, Mass.Google Scholar
  87. Lightbody, L., Pfeiffer, S. E., Kornblith, P. L., and Herschman, H. R. 1970. Biochemically differentiated clonal glial cells in tissue culture. J. Neurobiol. 1:411–417.PubMedGoogle Scholar
  88. Lockhart, R. Z., Jr., and Eagle, H. 1959. Requirements for growth of single cells. Science 129:252–254.Google Scholar
  89. Lowry, O. H. 1953. The quantitative histochemistry of the brain. J. Histochem. Cytochem. 1:420–428.PubMedGoogle Scholar
  90. Lumsden, C. E. 1963. Tissue culture in relation to tumors of the nervous system, pp. 317–322. In D. S. Russell and L. J. Rubenstein (eds.). Pathology of Tumors of the Nervous System. Williams & Wilkins, Baltimore.Google Scholar
  91. Luse, S. A. 1960. Electron microscopic studies of brain tumors. Neurology 10:881–905.PubMedGoogle Scholar
  92. Lwoff, A., Dulbecco, R., Vogt, M., and Lwoff, M. 1955. Kinetics of release of poliomyelitis virus from single cells. Virology 1:128–139.PubMedGoogle Scholar
  93. MacPherson, I., and Montagnier, L. 1964. Agar suspension cultures for the selective assay of cells transformed by polyoma virus. Virology 23:291–294.PubMedGoogle Scholar
  94. Masson, P. 1932. Experimental and spontaneous schwannomas (peripheral gliomas). Am. J. Pathol. 8:367–415.PubMedGoogle Scholar
  95. Maturana, H. R. 1960. The fine anatomy of the optic nerve of anurans—An electron microscope study. J. Biophys. Biochem. Cytol. 7:107–119.PubMedGoogle Scholar
  96. Mihl, E., and Wolfgram, F. 1969. Myelin types with different protein components in the same species. J. Neurochem. 16:1091–1097.Google Scholar
  97. Miller, R. G., and Phillips, R. A. 1969. Separations of cells by velocity sedimentation. J. Cell. Physiol. 73:191–202.PubMedGoogle Scholar
  98. Minna, J., Nelson, P., Peacock, J., Glazer, D., and Nirenberg, M. 1971. Genes for neuronal properties expressed in neuroblastoma × L cell hybrids. Proc. Natl. Acad. Sci. 68: 234–239.PubMedGoogle Scholar
  99. Minna, J., Glazer, D., and Nirenberg, M. 1972. Genetic dissection of neural properties using somatic cell hybrids. Nature New Biol. 235:225–231.PubMedGoogle Scholar
  100. Mokrasch, L. C. 1972. Preparation and properties of animal proteins in organic solvents. Prep. Biochem. 2:1–19.PubMedGoogle Scholar
  101. Mokrasch, L. C., Bear, R. S., and Schmitt, F. O. 1971. Myelin. Neurosci. Res. Progr. Bull. 9:440–598.Google Scholar
  102. Moore, B. W. 1965. A soluble protein characteristic of the nervous system. Biochem. Biophys. Res. Commun. 19:739–744.PubMedGoogle Scholar
  103. Moore, B. W., and McGregor, D. 1965. Chromatographic and electrophoretic fractionation of soluble proteins of brain and liver. J. Biol. Chem. 240:1647–1653.PubMedGoogle Scholar
  104. Moore, B. W., and Perez, V. S. 1968. Specific acidic proteins of the nervous system, pp. 343–359. In F. D. Carlson (ed.). Physiological and Biochemical Aspects of Nervous Integration. Prentice-Hall, Englewood Cliffs, N. J.Google Scholar
  105. Moore, B. W., Perez, V. J., and Gehring, M. 1968. Assay and regional distribution of a soluble protein characteristic of the nervous system. J. Neurochem. 15:265–272.PubMedGoogle Scholar
  106. Morgan, I. G., Wolfe, L. S., Mandel, P., and Gombos, G. 1971. Isolation of plasma membranes from rat brain. Biochem. Biophys. Acta 241:737–751.PubMedGoogle Scholar
  107. Murray, M. R., and Stout, A. P. 1940. Schwann cell versus fibroblast as the origin of the specific nerve sheath tumor. Am. J. Pathol. 16:41–60.PubMedGoogle Scholar
  108. Nelson, P. G., and Ruddle, F. H. 1971. Contributions of clonal systems to neurobiology. Neurosci. Res. Progr. Bull. (In preparation from notes at a meeting of NRP work session, Brookline, Mass.).Google Scholar
  109. Nelson, P., Ruffner, W., and Nirenberg, M. 1969. Neuronal tumor cells with excitable membranes grown in vitro. Proc. Natl. Acad. Sci. 64:1004–1010.PubMedGoogle Scholar
  110. Norton, W. T., and Poduslo, S. E. 1970. Neuronal soma and whole neuroglia of rat brain: A new isolation technique. Science 167:1144–1146.PubMedGoogle Scholar
  111. Olafson, R. W., Drummond, G. I., and Lee, J. F. 1969. Studies on 2′, 3′-cyclic nucleotide-3′-phosphohydrolase from brain. Can. J. Biochem. 47:961–966.PubMedGoogle Scholar
  112. Paik, W. K., Kim, S., and Lee, H. W. 1972. Protein methylation during the development of the brain. Biochem. Biophys. Res. Commun. 46:933–941.PubMedGoogle Scholar
  113. Patterson, R. Y. 1966. Experimental allergic encephalomyelitis and autoimmune disease. Advan. Immunol. 5:131–208.Google Scholar
  114. Patterson, R. Y. 1969. Tmmune processes and infectious factors in central nervous system disease. Ann. Rev. Med. 20:75–100.Google Scholar
  115. Penfield, W. 1932. Tumors of the sheaths of the nervous system, pp. 955–990. In W. Penfield (ed.). Cytology and Cellular Pathology of the Nervous System. Hoeber, New York.Google Scholar
  116. Perez, V. J., and Moore, B. W. 1968. Wallerian degeneration in rabbit tibial nerve: Changes in amounts of the S100 protein. J. Neurochem. 15:971–977.PubMedGoogle Scholar
  117. Perez, V. J., Olney, J. W., Cicero, T. J., Moore, B. W., and Bahu, B. A. 1970. Wallerian degeneration in rabbit optic nerve: Cellular localization in the central nervous system of the S100 and 14-3-2 protein. J. Neurochem. 17:511–519.PubMedGoogle Scholar
  118. Peters, A. 1960. The formation and structure of myelin sheaths in the central nervous system. J. Biophys. Biochem. Cytol. 8:431–446.PubMedGoogle Scholar
  119. Pfeiffer, S. E., and Wechsler, W. 1972. A biochemically differentiated line of Schwann cells. Proc. Natl. Acad. Sci. 69:2885–2889.PubMedGoogle Scholar
  120. Pfeiffer, S. E., Herschman, H. R., Lightbody, J. E., Sato, G., and Levine, L. 1971. Modification of cell surface antigenicity as a function of culture conditions. J. Cell. Physiol. 78:145–151.PubMedGoogle Scholar
  121. Pfeiffer, S. E., Herschman, H. R., Lightbody, J., and Sato, G. 1970. Synthesis by a clonal line of rat glial cells of the protein unique to the nervous system. J. Cell. Physiol. 75: 329–340.PubMedGoogle Scholar
  122. Pfeiffer, S. E., Kornblith, P. L., Levine, L., Cares, H. L., and Seals, J. 1972. S100 protein in human acoustic neurinomas. Brain Res. 41:187–193.PubMedGoogle Scholar
  123. Pineda, A. 1964. Submicroscopic structure of acoustic tumors. Neurology 14:171–184.PubMedGoogle Scholar
  124. Pluznik, D. H., and Sachs, L. 1965. The cloning of normal mast cells in tissue culture. J. Cell. Comp. Physiol. 66:319–324.Google Scholar
  125. Prasad, K. N. 1972. Morphological differentiation induced by prostaglandin in mouse neuroblastomas cells in culture. Nature New Biol. 326:49–52.Google Scholar
  126. Prasad, K. N., and Hsie, A. W. 1971. Morphologic differentiation of mouse neuroblastoma cells induced in vitro by dibutyryl adenosine 3′,5′-cyclic monophosphate. Nature New Biol. 233:141–142.PubMedGoogle Scholar
  127. Puck, T. T., and Marcus, P. I. 1955. A rapid method for viable cell titration and clone production with HeLa cells in tissue culture. Proc. Natl. Acad. Sci. 41:432–437.PubMedGoogle Scholar
  128. Puck, T. T., Marcus, P. I., and Cieciura, S. J. 1956. Clonal growth of mammalian cells in vitro. J. Exptl. Med. 103:273–283.Google Scholar
  129. Raimondi, A. J., and Beckman, F. 1967. Perineural fibroblastomas: Their fine structure and biology. Acta Neuropathol. 8:1–23.PubMedGoogle Scholar
  130. Riekkinen, P. J., Palo, J., and Arstila, A. U. 1971. Protein composition of multiple sclerosis myelin. Arch. Neurol. 24:545–549.PubMedGoogle Scholar
  131. Robertson, J. D. 1955. The ultrastructure of adult vertebrate peripheral myelinated nerve fibers in relation to myelinogenesis. J. Biophys. Biochem. Cytol. 1:271–278.PubMedGoogle Scholar
  132. Roots, B. I., and Johnston. P. V. 1965. Lipids of isolated neurons. Biochem. J. 94:61–63.PubMedGoogle Scholar
  133. Rose, S. P. R. 1967. Preparations of enriched fractions from cerebral cortex containing isolated, metabolically active neuronal and glial cells. Biochem. J. 102:33–43.PubMedGoogle Scholar
  134. Rose, S. P. R. 1969. Neurons and glia: Separation techniques and biochemical interrelationships, pp. 183–239. In A. Lajtha (ed.). Handbook of Neurochemistry, Vol. 2. Plenum Press, New York.Google Scholar
  135. Rose, S. P. R., and Sinha, A. K. 1969. Some properties of isolated neuronal cell fractions. J. Neurochem. 16:1319–1328.PubMedGoogle Scholar
  136. Rosenberg, R. M., Vandeventer, L., DeFrancesco, L., and Friedkin, M. E. 1971. Regulation of the synthesis of choline-O-acetyltransferase and thymidylate synthetase in mouse neuroblastoma in cell culture. Proc. Natl. Acad. Sci. 68:1436–1440.PubMedGoogle Scholar
  137. Sanders, F. K., and Burford, B. O. 1964. Ascites tumors from BHK. 21 cells transformed in vitro by polyoma virus. Nature 201:786–789.PubMedGoogle Scholar
  138. Sanford, K. K., Earle, W. R., and Likely, D. G. 1948. The growth in vitro of single isolated tissue cells. J. Natl. Cancer Inst. 9:229–246.PubMedGoogle Scholar
  139. Sanford, K. K., Covalesky, A. B., Dupress, L. T., and Earle, W. R. 1961. Cloning of mammalian cells by a simplified capillary technique. Exptl. Cell Res. 23:361–372.PubMedGoogle Scholar
  140. Satake, M., and Abe, S. 1966. Preparation and characterization of nerve cell perikaryon from rat cerebral cortex. J. Biochem. 59:72–75.PubMedGoogle Scholar
  141. Satake, M., Hasegawa, S., Abe, S., and Tanaka, R. 1968. Preparation and characterization of nerve cell perikaryon from pig brain stem. Brain Res. 11:246–250.PubMedGoogle Scholar
  142. Sato, G. H., and Yasumura, Y. 1966. Retention of differentiated function in dispersed cell cultures. Trans. N.Y. Acad. Sci. II. 28:1063–1079.Google Scholar
  143. Sato, G., Augusti-Tocco, G., Posner, M., and Kelly, P. 1970. Hormone-secreting and hormone-responsive cell cultures, pp. 539–546. In E. B. Astwood (ed.). Recent Progress in Hormone Research, Vol. 26. Academic Press, New York.Google Scholar
  144. Schenck, D. M., and Moskowitz, M. 1958. Method for isolating single cells and preparation of clones from human bone marrow cultures. Proc. Soc. Exptl. Biol. Med. 99: 30–33.Google Scholar
  145. Schimmer, B. P. 1971. Effects of catecholamines and monovalent cations on adenylate cyclase activity in cultured glial tumor cells. Biochem. Biophys. Acta 252:567–573.PubMedGoogle Scholar
  146. Schubert, D., and Jacob, F. 1970. 5-Bromodeoxyuridine-induced differentiation of a neuroblastoma. Proc. Natl. Acad. Sci. 67:247–254.PubMedGoogle Scholar
  147. Schubert, D., Humphreys, S., Baroni, C., and Cohn, M. 1969. In vitro differentiation of a mouse neuroblastoma. Proc. Natl. Acad. Sci. 64:316–323.PubMedGoogle Scholar
  148. Schubert, D., Tarikas, H., Harris, A. J., and Heinemann, S. 1971a. Induction of acetylcholinesterase activity in a mouse neuroblastoma. Nature New Biol. 233:78–80.Google Scholar
  149. Shubert, D., Humphreys, S., de Vitry, F., and Jacob, F. 1971b. Induced differentiation of a neuroblastoma. Develop. Biol. 25:514–546.Google Scholar
  150. Seeds, N. W., Gilman, A. G., Amano, T., and Nirenberg, M. 1970. Regulation of axon formation by clonal lines of a neural tumor. Proc. Natl. Acad. Sci. 66:160–167.PubMedGoogle Scholar
  151. Sellinger, O. Z., Azcurra, J. M., Johnson, D. E., Ohlsson, W. G., and Locin, Z. 1971. Independence of protein synthesis and drug uptake in nerve cell bodies and glial cells isolated by a new technique. Nature New Biol. 230:253–256.PubMedGoogle Scholar
  152. Stoker, M., and Sussman, M. 1965. Studies on the action of feeder layers in cell culture. Exptl. Cell Res. 38:645–653.PubMedGoogle Scholar
  153. Stout, A. P. 1949. Atlas of Tumor Pathology, Sect. II, Fasc. 6, pp. 15–30. American Registry of Pathology, A.F.I.P., Washington, D.C.Google Scholar
  154. Sudo, T., Kikuno, M., and Kurihara, T. 1972. 2′,3′-Cyclic nucleotide 3′-phosphohydrolase in human erythrocyte membranes. Biochem. Biophys. Acta 255:640–646.PubMedGoogle Scholar
  155. Sundar Raj, N., and Pfeiffer, S. E. 1973. Myelin basic protein arginine methyltransferase: Wide distribution among both neurogenic and non-neurogenic tissues. Biochem. Biophys. Res. Comm. 52:1039–1045.Google Scholar
  156. Swenberg, J. A., Koestner, A., and Wechsler, W. 1971. Induction of tumors of the nervous system in adult rats with intravenous methylnitrosourea. J. Neuropathol. Exptl. Neurol. 30:122.Google Scholar
  157. Tashjian, A., Yasumura, Y., Levine, L., Sato, G., and Parker, M. 1968. Establishment of clonal strains of rat pituitary tumor cells that secrete growth hormone. Endocrinology 82:342–352.PubMedGoogle Scholar
  158. Tarlov, I. M. 1940. Origin of the perineural fibroblastoma. Am. J. Pathol. 16:33–40.PubMedGoogle Scholar
  159. Tenenbaum, D., and Folch-Pi, J. 1966. The preparation and characterization of water soluble proteolipid protein from bovine brain white matter. Biochem. Biophys. Acta 115:141–147.PubMedGoogle Scholar
  160. Verocay, J. 1908. Multiple Geschwulste als Systemerkrankung am nervosen Apparate, pp. 378–415. In Festschrift Hans Chiari aus Anlasz seines 25 Jahringer Professoren— Jubilaums gewidmet, W. Braumuller, Vienna and Leipzig.Google Scholar
  161. Waksman, B. H., and Adams, R. D. 1956. A comparative study of experimental allergic neuritis in the rabbit, guinea pig, and mouse. J. Neuropathol. Exptl. Neurol. 15:293–314.Google Scholar
  162. Wechsler, W. 1972. Old and new concepts of oncogenesis in the nervous system of man and animals, pp. 219–278. In W. G. Bingham (ed.). Progress in Experimental Tumor Research, Vol. 17. Karger, Basel.Google Scholar
  163. Wechsler, W., and Hossman, K. A. 1965. Zur Feinstruktur menschlicher Acusticusneurinome. Beitr. Pathol. Anat. 132:319–343.PubMedGoogle Scholar
  164. Wechsler, W., and Ramadan, M. A. 1971. Ethyl-nitrosourea-induced transplantable tumors of the peripheral nervous system in inbred rats. Naturwissenschaften 58:577–578.PubMedGoogle Scholar
  165. Wechsler, W., Kleihues, P., Matsumoto, S., Zülch, K. J., Ivankovic, S., Preussman, R., and Druckrey, H. 1969. Pathology of experimental neurogenic tumors chemically-induced during prenatal and postnatal life. Ann. N.Y. Acad. Sci. 159:360–408.Google Scholar
  166. Wechsler, W., Pfeiffer, S. E., Swenberg, J. A., and Koestner, A. 1972. S100 protein in experimental rat tumors of the central and peripheral nervous system. Naturwissenschaften 59:370–371.PubMedGoogle Scholar
  167. Wechsler, W., Pfeiffer, S. E., Swenberg, J. A., and Koestner, A. 1973. S100 protein in methyl-and ethylnitrosourea induced tumors of the rat nervous system. Acta Neuropathol. (Berl.) 24:287–303.Google Scholar
  168. Winkler, G. F. 1965. In vitro demyelination of peripheral nerve induced with sensitized cells. Ann. N.Y. Acad. Sci. 122:287–296.PubMedGoogle Scholar
  169. Wolfgram, F., and Kotori, K. 1968. The composition of the myelin proteins of the central nervous system. J. Neurochem. 15:1281–1290.PubMedGoogle Scholar
  170. Yasumura, Y., Buonassasi, V., and Sato, G. H. 1966a. Clonal analysis of differentiated function in animal cell cultures. Cancer Res. 26:529–535.PubMedGoogle Scholar
  171. Yasumura, Y., Tashjian, A. H., and Sato, G. H. 1966b. Establishment of four functional, clonal strains of animal cells in culture. Science 154:1186–1189.Google Scholar
  172. Zanetta, J. P., Benda, P., Gombos, G., and Morgan, I. G. 1972. The presence 2′,3′-cyclic AMP 3′-phosphohydrolase in glial cells in tissue culture. J. Neurochem. 19:881–883.PubMedGoogle Scholar
  173. Zaroff, L., Sato, G., and Mills, S. E. 1961. Single cell platings from freshly isolated mammalian tissue. Exptl. Cell Res. 23:565–575.Google Scholar
  174. Zimmerman, H. M., Netsky, M. G., and Davidoff, L. M. 1956. Atlas of Tumors of the Nervous System, Lea and Febiger, Philadelphia.Google Scholar
  175. Zuckerman, J. E., Herschman, H. R., and Levine, L. 1970. Appearance of a brain specific antigen (the S100 protein) during human foetal development. J. Neurochem. 17:247–251.PubMedGoogle Scholar
  176. Zulch, K. J., and Milhaud, M. 1960. Etude de la fibre du neurimone. Son origine Schwannienne et sa nature neuroectodermique. Rev. Neurol. 103:541–555.Google Scholar
  177. Zülch, K. J., and Mennel, H. D. 1970. Recent results on chemically induced tumors of the nervous system, pp. 60–83. In Sixth International Congress of Neuropathology. Masson, Paris.Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • S. E. Pfeiffer
    • 1
  1. 1.Department of MicrobiologyUniversity of Connecticut Health CenterFarmingtonUSA

Personalised recommendations