Nervous System-Specific Proteins in Cultured Neural Cells

  • Harvey R. Herschman
  • Barbara P. Grauling
  • Michael P. Lerner
Part of the Current Topics in Neurobiology book series (CTNB)


The earliest reports of differentiated functions in serially cultured cell strains and lines are difficult to trace completely and depend to some degree on an acceptable definition of the term “differentiated.” Should we, for example, consider the species and strain-specific antigens of cells as “functional” or #x201C;differentiated” markers? Several early references describe serially cultured cells which maintained such antigenic distinctions (Brand and Syverton, 1960; Stulberg, et al., 1961; Coombs, 1962). The consensus arising from an analysis of much of the cell culture studies of the 1950s and early 1960s, however, suggested that serially cultured cells generally lose the ability to carry out differentiated functions characteristic of their tissue of origin. Occasional reports to the contrary, the loss of differentiated function was thought to be a relatively general feature of dispersed cell culture. In the early 1960s loss of function in cultured cells was ascribed to two different mechanisms. The first of these phenomena was termed #x201C;dedifferentiation,” a process inherent in cells propagated in dispersed culture. Alternatively, selective overgrowth by undifferentiated cells in the mixed cultures was postulated as the factor responsible for loss of function. The review of Levintow and Eagle (1961) describes the debate over these two phenomena as it existed at that time, while Yasumura (1968) provides a retrospective discussion of the controversy. Sato and his associates were able to resolve at least some aspects of this debate when they isolated from neoplasms of various endocrine organs a variety of clonal cell strains which were capable of producing organ-specific products in culture (Buonassisi et al., 1962; Yasumura et al., 1966). These results clearly demonstrated that selective overgrowth was responsible for the observed “dedifferentiation” in some cases; growth in culture did not ipso facto mean loss of function for the progeny of a functional cell. The clonal isolation of functional cell strains from neoplastic tissue has since become a major tool in a number of areas, including cell biology, endocrinology, and, most recently, neurobiology.


S100 Protein Immune Precipitate Complement Fixation Reaction Disperse Cell Culture Mature Neural Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Augusti-Tocco, G., and Sato, G. 1969. Proc. Nail. Acad. Sci. 64:311.CrossRefGoogle Scholar
  2. Benda, P. J., Lightbody, J., Sato, G. H., Levine, L., and Sweet, W. 1968. Science 161:370.PubMedCrossRefGoogle Scholar
  3. Bennett, G. S., and Edelman, G. M. 1968. J. Biol. Chem. 243:6234.PubMedGoogle Scholar
  4. Brand, K. G., and Syverton, J. T. 1960. J. Natl. Cancer Inst. 24:1007.PubMedGoogle Scholar
  5. Buonassisi, V., Sato, G. H., and Cohen, A. I. 1962. Proc. Natl. Acad. Sci. 48:1184.PubMedCrossRefGoogle Scholar
  6. Cahn, R. D., and Lasher, R. 1967. Proc. Natl. Acad. Sci. 58:1131.PubMedCrossRefGoogle Scholar
  7. Cicero, T. J., and Moore, B. W. 1970. Science 169:1333.PubMedCrossRefGoogle Scholar
  8. Coombs, R. R. A. 1962. Natl. Cancer Inst. Monogr. 7:91.PubMedGoogle Scholar
  9. Dannies, P. S., and Levine, L. 1969. Biochem. Biophys. Res. Commun. 37:587.PubMedCrossRefGoogle Scholar
  10. Druckrey, H., Ivankovic, S., and Preussmann, R. 1965. Z. Krebsforsch. 66:389.PubMedCrossRefGoogle Scholar
  11. Furmanski, P., Silverman, D. J., and Lubin, M. 1971. Nature 233:413.PubMedCrossRefGoogle Scholar
  12. Goldstein, M. N., Burdman, J. A., and Journey, L. J. 1964. J. Natl. Cancer Inst. 32:165.PubMedGoogle Scholar
  13. Green, H., and Goldberg, B. 1964. Nature 200:1097.CrossRefGoogle Scholar
  14. Gribble, T. J., Comstock, J. P., and Udenfriend, S., 1969. Arch. Biochem. Biophys. 129:308.PubMedCrossRefGoogle Scholar
  15. Ham, R. G., 1972. In D. Prescott (ed.). Methods in Cell Physiology, Vol. 5, p. 37. Academic Press, New York.Google Scholar
  16. Herschman, H. R. 1971. J. Biol. Chem. 246:7569.PubMedGoogle Scholar
  17. Herschman, H. R., Breeding, J., and Nedrud, J. 1971a. J. Cell. Physiol. 79:249.CrossRefGoogle Scholar
  18. Herschman, H. R., Levine, L., and de Vellis, J. 1971b. J. Neurochem. 18:629.PubMedCrossRefGoogle Scholar
  19. Herschman, H. R., and Lerner, M. P., 1973. Nature New Biology 241:242.PubMedGoogle Scholar
  20. Kessler, D., Levine, L., and Fasman, G. D. 1968. Biochemistry 7:758.PubMedCrossRefGoogle Scholar
  21. Kosinski, E., and Grabar, P. 1967. J. Neurochem. 14:273.PubMedCrossRefGoogle Scholar
  22. Levine, L. 1967. In D. M. Weir (ed.). Handbook of Experimental Immunochemistry, p. 707. Blackwell Scientific Publications, Oxford.Google Scholar
  23. Levine, L., and Moore, B. W. 1966. In F. O. Schmitt and T. Melnechuk (eds.). Neurosciences Research Symposium Summaries, p. 454. MIT Press, Cambridge, Mass.Google Scholar
  24. Levintow, L., and Eagle, H. 1961. Ann. Rev. Biochem. 30:605.CrossRefGoogle Scholar
  25. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. J. Biol. Chem. 193:265.PubMedGoogle Scholar
  26. Lyon, G. M., Jr. 1970. Cancer Res. 30:2521.PubMedGoogle Scholar
  27. Mans, R. J., and Novelli, G. D. 1961. Arch. Biochem. Biophys. 94:48.CrossRefGoogle Scholar
  28. McEwen, B. S., and Hyden. H. 1966. J. Neurochem. 13:823.PubMedCrossRefGoogle Scholar
  29. Moore, B. W. 1965. Biochem. Biophys. Res. Commun. 19:739.PubMedCrossRefGoogle Scholar
  30. Moore, B. W., and McGregor, D. J. 1965. J. Biol. Chem. 240:1647.PubMedGoogle Scholar
  31. Moore, B. W., and Perez, V. J. 1968. In F. D. Carlson (ed.). Physiological and Biochemical Aspects of Nervous Integration, p. 43. Prentice-Hall, Englewood Cliffs, N. J.Google Scholar
  32. Moore, B. W., Cicaro, T. J., Perez, V. J., and Cowan, W. M. 1971. In D. E. Pease (ed.). Cellular Aspects of Neural Growth and Differentiation, p. 481. University of California Press, Berkeley and Los Angeles.Google Scholar
  33. Ouchterlony, O. 1958. In P. Kallos (ed.). Progress in Allergy, Vol. 5, p. 1. Karger, Basel.Google Scholar
  34. Pfeiffer, S. E., Herschman, H. R., Lightbody, J., and Sato, G. 1970. J. Cell Physiol. 75: 329.PubMedCrossRefGoogle Scholar
  35. Pfeiffer, S. E., Herschman, H. R., Lightbody, J., Sato, G., and Levine, L. 1971. J. Cell Physiol. 78:145.PubMedCrossRefGoogle Scholar
  36. Prasad, K. N. 1971. Nature 234:471.PubMedCrossRefGoogle Scholar
  37. Prasad, K. N. 1972. Nature New Biol. 236:49.PubMedGoogle Scholar
  38. Prasad, K. N., and Hsie, A. W. 1971. Nature New Biol. 233:141.PubMedGoogle Scholar
  39. Richardson, U. I., Tashjian, A. H., Jr., and Levine, L. 1969. J. Cell Biol. 40:236.PubMedCrossRefGoogle Scholar
  40. Rubin, A. L., and Stenzel, K. H. 1965. Proc. Natl. Acad. Sci. 53:963.PubMedCrossRefGoogle Scholar
  41. Schubert, D., Humphreys, S., DeVitry, F., and Jacob, F. 1971. Develop. Biol. 25:514.PubMedCrossRefGoogle Scholar
  42. Seeds, N. W., Gilman, A. G., Amano, T., and Nirenberg, M. W. 1970. Proc. Natl. Acad. Sci. 66:160.PubMedCrossRefGoogle Scholar
  43. Stulberg, C. S., Simonson, W. F., and Berman, L. 1961. Proc. Soc. Exptl. Biol. Med. 108: 434.Google Scholar
  44. Tumilowicz, J. J., Nichols, W. W., Cholon, J. J., and Greene, A. E. 1970. Cancer Res. 30: 2110.PubMedGoogle Scholar
  45. Warecka, K., and Baur, H. J. 1967. J. Neurochem. 14:783.PubMedCrossRefGoogle Scholar
  46. Weber, K., and Osborn, M. 1969. J. Biol. Chem. 244:4406.PubMedGoogle Scholar
  47. Yasumura, Y. 1968. Am. Zoologist 8:285.Google Scholar
  48. Yasumura, Y., Tashjian, A. H., Jr., and Sato, G. 1966. Science 154:1186.CrossRefGoogle Scholar
  49. Zuckerman, J. E., Herschman, H. R., and Levine, L. 1970. J. Neurochem. 17:247.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Harvey R. Herschman
    • 1
  • Barbara P. Grauling
    • 1
  • Michael P. Lerner
    • 1
  1. 1.The Departments of Biological Chemistry and Neurosciences and Laboratory of Nuclear Medicine and Radiation Biology, School of MedicineUniversity of CaliforniaLos AngelesUSA

Personalised recommendations