Advertisement

Genetic Analysis of the Mammalian Nervous System Using Somatic Cell Culture Techniques

  • John D. Minna
Part of the Current Topics in Neurobiology book series (CTNB)

Abstract

The success of genetic analysis of complex biochemical pathways, morphogenetic events, and their regulation in phage, bacteria, and yeast has suggested to many workers that such an analysis would be invaluable in the study of development and differentiation. The available information indicates that differentiation in higher organisms represents in part a mitotically inherited program of gene expression with commitment of different somatic cell lines to unique programs of gene expression (Gehring, 1969). Genetic analysis of developmental steps would seem to be both possible and necessary in order for us to understand differentiation.

Keywords

Pituitary Adenoma Neuroblastoma Cell AChE Activity Hybrid Cell Clonal Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amano, T., Richelson, E., and Nirenberg, M. 1972. Neurotransmitter synthesis by neuroblastoma clones. Proc. Natl. Acad. Sci. 69:258–263.PubMedCrossRefGoogle Scholar
  2. Augusti-Tocco, G., and Sato, G. 1969. Establishment of functional clonal lines of neurons from mouse neuroblastoma. Proc. Natl. Acad. Sci. 64:311–315.PubMedCrossRefGoogle Scholar
  3. Augustinsson, K.-B. 1957. Assay methods for cholinesterases, pp. 1–63. In D. Glick (ed.). Methods in Biochemical Analysis. Interscience Publishers, New York.CrossRefGoogle Scholar
  4. Austin, L., and Berry, W. K. 1953. Two selective inhibitors of cholinesterase. Biochem. J. 54:695–700.PubMedGoogle Scholar
  5. Benda, P., Lightbody, J., Sato, G., Levine, L., and Sweet, W. 1968. Differentiated rat glial cell strain in tissue culture. Science 161:370–371.PubMedCrossRefGoogle Scholar
  6. Blume, A., Gilbert, F., Wilson, S., Farber, J., Rosenberg, R., and Nirenberg, M. 1970. Regulation of acetylcholinesterase in neuroblastoma cells. Proc. Natl. Acad. Sci. 67: 786–792.PubMedCrossRefGoogle Scholar
  7. Caspersson, T., Zech, L., and Johansson, C., 1970. Differential binding of alkylating fluorochromes in human chromosomes. Exptl. Cell Res. 60:315–319.PubMedCrossRefGoogle Scholar
  8. Clark, R. B., and Perkins, J. P. 1971. Regulation of adenosine 3′,5′-cyclic monophosphate concentration in cultured human astrocytoma cells by catecholamines and histamine. Proc. Natl. Acad. Sci. 68:2757–2760.PubMedCrossRefGoogle Scholar
  9. Coffino, P., Laskov, R., and Scharff, M. D. 1970. Immunoglobulin production: Method for quantitatively detecting variant myeloma cells. Science 167:186–188.PubMedCrossRefGoogle Scholar
  10. Coon, H. G., and Weiss, M. C. 1969. A quantitative comparison of formation of spontaneous and virus-produced viable hybrids. Proc. Natl. Acad. Sci. 62:852–859.PubMedCrossRefGoogle Scholar
  11. Davidson, R. L., 1971. Regulation of gene expression in somatic cell hybrids: A review. In Vitro 6:411–426.PubMedCrossRefGoogle Scholar
  12. Davidson, R. L. 1972. Regulation of melanin synthesis in mammalian cells: Effect of gene dosage on the expression of differentiation. Proc. Natl. Acad. Sci. 69:951–955.PubMedCrossRefGoogle Scholar
  13. Davidson, R. L., and Benda, P. 1970. Regulation of specific functions of glial cells in somatic hybrids. II. Control of inducibility of glycerol-3-phosphate dehydrogenase. Proc. Natl. Acad. Sci. 64:1870–1877.CrossRefGoogle Scholar
  14. Davidson, R. L., and Yamamoto, K. 1968. Regulation of melanin synthesis in mammalian cells, as studied by somatic hybridization. II. The levels of regulation of 3,4-dihydroxyphenylalanine oxidase. Proc. Natl. Acad. Sci. 60:894–901.PubMedCrossRefGoogle Scholar
  15. Davidson, R. L., Ephrussi, B., and Yamamoto, K. 1966. Regulation of pigment synthesis in mammalian cells, as studied by somatic hybridization. Proc. Natl. Acad. Sci. 56: 1437–1440.PubMedCrossRefGoogle Scholar
  16. Dawson, G., Kemp, S. F., Stoolmiller, A. C., and Dorfman, A. 1971. Biosynthesis of glycosphingolipids by mouse neuroblastoma (NB41A), rat glia (RGC-6) and human glia (CHB-4) in cell culture. Biochem. Biophys. Res. Commun. 44:687–694.PubMedCrossRefGoogle Scholar
  17. DiZerega, G., and Morrow, J. 1970. The effect of nerve growth factor on dispersed neuronal-HeLa heterokaryons. Exptl. Neurol. 28:206–212.CrossRefGoogle Scholar
  18. Drets, M. E., and Shaw, M. W. 1971. Specific banding patterns of human chromosomes. Proc. Natl. Acad. Sci. 68:2073–2077.PubMedCrossRefGoogle Scholar
  19. Engle, E., McGee, B. J., and Harris, H. 1969. Recombination and segregation in somatic cell hybrids. Nature 223:152–155.CrossRefGoogle Scholar
  20. Ephrussi, B. 1972. Hybridization of Somatic Cells. Princeton University Press, Princeton, N.J. 175 pp.Google Scholar
  21. Ephrussi, B., and Weiss, M. C. 1965. Interspecific hybridization of somatic cells. Proc. Natl. Acad. Sci. 53:1040–1042.PubMedCrossRefGoogle Scholar
  22. Ephrussi, B., and Weiss, M. C. 1968. Regulation of the cell cycle in mammalian cells: Inferences and speculations based on observations of interspecific somatic hybrids. In Control Mechanisms in Developmental Processes. Proceedings of the 26th symposium of the Society for Developmental Biology (Develop. Biol., Suppl. I). Academic Press, New York.Google Scholar
  23. Finch, B. W., and Ephrussi, B. 1967. Retention of multiple developmental potentialities by cells of a mouse testicular teratocarcinoma during prolonged culture in vitro and their extinction upon hybridization with cells of permanent lines. Proc. Natl. Acad. Sci. 57:615–621.PubMedCrossRefGoogle Scholar
  24. Fougere, C., Ruiz, F., and Ephrussi, B. 1972. Gene dosage dependence of pigment synthesis in melanoma x fibroblast hybrids. Proc. Natl. Acad. Sci. 69:330–334.PubMedCrossRefGoogle Scholar
  25. Gehring, W. 1969. Problems of cell determination and differentiation in Drosophila, pp. 231–299. In E. W. Hanly (ed.). Problems in Biology: RNA in Development. University of Utah Press, Salt Lake City.Google Scholar
  26. Gilman, A., and Minna, J., 1972. Adenosine S′,5′-cyclic monophosphate (cAMP) regulation in somatic cell hybrids. Am. Soc. Cell Biol. (St. Louis), abst.Google Scholar
  27. Gilman, A. G., and Nirenberg, M. 1971a. Effect of catecholamines on the adenosine 3′,5′-cyclic monophosphate concentrations of clonal satellite cells of neurons. Proc. Natl. Acad. Sci. 68:2165–2168.PubMedCrossRefGoogle Scholar
  28. Gilman, A. G., and Nirenberg, M. 1971b. Regulation of adenosine 3′,5′-cyclic monophosphate metabolism in cultured neuroblastoma cells. Nature 234:356–357.PubMedCrossRefGoogle Scholar
  29. Gurdon, J. B. 1966. Nuclear transplantation in amphibia and the importance of stable nuclear changes in promoting cellular differentiation. Quart. Rev. Biol. 38:54–78.Google Scholar
  30. Harris, H. 1967. The reactivation of the red cell nucleus. J. Cell Sci. 2:23–32.PubMedGoogle Scholar
  31. Harris, A. J., and Dennis, M. J. 1970. Acetylcholine sensitivity and distribution on mouse neuroblastoma cells. Science 167:1253–1255.PubMedCrossRefGoogle Scholar
  32. Harris, H., Watkins, J. F., Ford, C. E., and Scheefl, G. I. 1966. Artificial heterokaryons of animal cells from different species. J. Cell Sci. 1:1–30.PubMedGoogle Scholar
  33. Harris, A. J., Heinemann, S., Schubert, D., and Tarakis, H. 1971. Trophic interaction between cloned tissue culture lines of nerve and muscle. Nature 231:296–301.PubMedCrossRefGoogle Scholar
  34. Hodgkin, A. L., and Huxley, A. F. 1952. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116:449–472.PubMedGoogle Scholar
  35. Hotta, Y., and Benzer, S. 1970. Genetic dissection of the Drosophila nervous system by means of mosaics. Proc. Natl. Acad. Sci. 67:1156–1163.PubMedCrossRefGoogle Scholar
  36. Ikeda, K., and Kaplan, W. D. 1970. Unilaterally patterned neural activity of gynandromorphs, mosaic for a neurological mutant of Drosophila melanogaster. Proc. Natl. Acad. Sci. 67:1480–1487.PubMedCrossRefGoogle Scholar
  37. Jacobson, C. 1968. Reactivation of DNA synthesis in mammalian neuron nuclei after fusion with cells of an undifferentiated fibroblast line. Exptl. Cell Res. 53:316–318.PubMedCrossRefGoogle Scholar
  38. Kao, F., Johnson, R. T., and Puck, T. T. 1969. Complementation analysis on virus fused Chinese hamster cells with nutritional markers. Science 164:312–314.PubMedCrossRefGoogle Scholar
  39. Kates, J. R., Winterton, R., and Schlessinger, K. 1970. Induction of acetylcholinesterase activity in mouse neuroblastoma tissue culture cells. Nature 229:345–346.CrossRefGoogle Scholar
  40. Katz, B., and Miledi, R. 1964. The development of acetylcholine sensitivity in nerve-free segments of skeletal muscle. J. Physiol. (Lond.) 170:389–396.Google Scholar
  41. Klebe, R. J., and Ruddle, F. 1969. Neuroblastoma: Cell culture analysis of a differentiating stem cell system. J. Cell Biol. 43:69a.Google Scholar
  42. Klebe, R. J., Chen, T., and Ruddle, F. R. 1970. Mapping of a human genetic regulator element by somatic cell genetic analysis. Proc. Natl. Acad. Sci. 66:1220–1227.PubMedCrossRefGoogle Scholar
  43. Kung, C., and Eckert, R. 1972. Genetic modification of electric properties in an excitable membrane. Proc. Natl. Acad. Sci. 69:93–97.PubMedCrossRefGoogle Scholar
  44. Lightbody, J., Pfeiffer, S. E., Kornblith, P. L., and Herschman, H. R. 1970. Biochemically differentiated clonal human glial cells in tissue culture. J. Neurobiol. 1:411–417.PubMedCrossRefGoogle Scholar
  45. Littlefield, J. W. 1964. Selection of hybrids from matings of fibroblasts in vitro and their presumed recombinants. Science 145:709–710.PubMedCrossRefGoogle Scholar
  46. Minna, J., Nelson, P., Peacock, J., Glazer, D., and Nirenberg, M. 1971. Genes for neuronal properties expressed in neuroblastoma × L cell hybrids. Proc. Natl. Acad. Sci. 68: 234–239.PubMedCrossRefGoogle Scholar
  47. Minna, J., Glazer, D., and Nirenberg, M. 1972. Genetic dissection of neural properties using somatic cell hybrids. Nature New Biol. 235:225–231.PubMedGoogle Scholar
  48. Mohit, B. 1971. Immunoglobulin G and free kappa-chain synthesis in different clones of a hybrid cell line. Proc. Natl. Acad. Sci. 68:3045–3048.PubMedCrossRefGoogle Scholar
  49. Nachmansohn, D. 1971. Chemical event in conducting and synaptic membranes during electrical activity. Proc. Natl. Acad. Sci. 68:3107–3174.CrossRefGoogle Scholar
  50. Nelson, P. G., and Peacock, J. H. 1972. Acetylcholine responses in L cells. Science 177: 1005–1007.PubMedCrossRefGoogle Scholar
  51. Nelson, P., Ruffner, W., and Nirenberg, M. 1969. Neuronal tumor cells with excitable membranes grown in vitro. Proc. Natl. Acad. Sci. 64:1004–1010.PubMedCrossRefGoogle Scholar
  52. Nelson, P. G., Peacock, J., and Amano, T. 1971a. Reponses of neuroblastoma cells to iontophoretically applied acetylcholine. J. Cell. Physiol. 77:353–362.PubMedCrossRefGoogle Scholar
  53. Nelson, P. G., Peacock, J. H., Amano, T., and Minna, J. 1971b. Electrogenesis in mouse neuroblastoma cells in vitro. J. Cell. Physiol. 77:337–352.PubMedCrossRefGoogle Scholar
  54. Nelson, P., Peacock, J., and Minna, J. 1972. An active electrical response in L cells. J. Gen. Physiol. 60:58–71.PubMedCrossRefGoogle Scholar
  55. Olmsted, J. B., Carlson, K., Klebe, R., Ruddle, F., and Rosenbaum, J. 1970. Isolation of microtubule protein from cultured mouse neuroblastoma cells. Proc. Natl. Acad. Sci. 65:129–136.PubMedCrossRefGoogle Scholar
  56. Patrick, J., Heinemann, S., Lindstrom, J., Schubert, D., and Stainbach, J. H. 1972. Appearance of acetylcholine receptors during differentiation of a myogenic cell line. Proc. Natl. Acad. Sci. 69:2762–2766.PubMedCrossRefGoogle Scholar
  57. Peacock, J., Minna, J., Nelson, P., and Nirenberg, M. 1972. The use of aminopterin in selecting electrically active neuroblastoma cells. Exptl. Cell Res. 13:361–371.Google Scholar
  58. Peterson, J. A., and Weiss, M. C. 1972. Expression of differentiated functions in hepatoma cell hybrids: Induction of mouse albumin production in rat hepatoma-mouse fibroblast hybrids. Proc. Natl. Acad. Sci. 69:571–575.PubMedCrossRefGoogle Scholar
  59. Pfeiffer, S. E., and Wechsler, W. 1972. Biochemically differentiated neoplastic clone of Schwann cells. Proc. Natl. Acad. Sci. 69:2885–2889.PubMedCrossRefGoogle Scholar
  60. Prasad, K. N., and Vernadakis, A. 1972. Morphological and biochemical study in x-ray and dibutyryl cyclic AMP-induced differentiated neuroblastoma cells. Exptl. Cell Res. 70:27–32.PubMedCrossRefGoogle Scholar
  61. Rall, T. W., and Gilman, A. G. 1970. The role of cyclic AMP in the nervous system. Neurosic. Res. Bull. 8(3).Google Scholar
  62. Rao, P. N., and Johnson, R. T. 1970. Mammalian cell fusion. I. Studies on the regulation of DNA synthesis and mitosis. Nature 225:159–164.PubMedCrossRefGoogle Scholar
  63. Schneider, J. A., and Weiss, M. C. 1971. Expression of differentiated functions in hepatoma cell hybrids. I. Tyrosine aminotransferase in hepatoma-fibroblast hybrids. Proc. Natl. Acad. Sci. 68:127–131.PubMedCrossRefGoogle Scholar
  64. Schubert, D., Humphreys, S., Baroni, C., and Cohn, M. 1969. In vitro differentiation of a mouse neuroblastoma. Proc. Natl. Acad. Sci. 64:316–323.PubMedCrossRefGoogle Scholar
  65. Schubert, D., Humphreys, S., De Vitry, F., and Jacob, F. 1971. Induced differentiation of a neuroblastoma. Develop. Biol. 25:514–546.PubMedCrossRefGoogle Scholar
  66. Seecof, R. L., Teplitz, R. L., Gerson, I., Ikeda, K., and Donady, J. 1972. Differentiation of neuromuscular junctions in cultures of embryonic Drosophila cells. Proc. Natl. Acad. Sci. 69:566–570.PubMedCrossRefGoogle Scholar
  67. Seeds, N. W. 1971. Biochemical differentiation in reaggregating brain cell culture. Pro. Natl. Acad. Sci. 68:1859–1861.Google Scholar
  68. Seeds, N. W., Gilman, A. G., Amano, T., and Nirenberg, M. W. 1970. Regulation of axon formation by clonal lines of a neural tumor. Proc. Natl. Acad. Sci. 66:160–167.PubMedCrossRefGoogle Scholar
  69. Sidman, R. L., Green, M. C., and Appel, S. H. 1965. Catalog of the Neurological Mutants of the Mouse. Harvard University Press, Cambridge, Mass.Google Scholar
  70. Siman-Tov, R., and Sachs, L. 1972. Enzyme regulation in neuroblastoma cells. Europ. J. Biochem. 30:123–129.PubMedCrossRefGoogle Scholar
  71. Sonnerschein, C., Tashjian, A. H., Jr., and Richardson, U. I. 1968. Somatic cell hybridization: Mouse-rat hybrid cell line involving a growth-hormone producing parent. Genetics 60:227–228.Google Scholar
  72. Sutherland, E. W., Robison, G. A., and Butcher, R. W. 1968. Some aspects of the biologic role of adenosine 3′,5′-monophosphate (cyclic AMP). Circulation 3:279–306.Google Scholar
  73. Tashjian, A., Yasumura, Y., Levine, L., Sato, G., and Parker, M. 1968. Establishment of clonal strains of rat pituitary tumor cells that secrete growth hormone. Endocrinology 82:342–352.PubMedCrossRefGoogle Scholar
  74. Vogel, Z., Sytkowski, A. J., and Nirenberg, M. W. 1972. Acetylcholine receptors of muscle grown in vitro. Proc. Natl. Acad. Sci. (in press).Google Scholar
  75. Weiss, M. C., and Chaplain, M. 1971. Expression of differentiated functions in hepatoma cell hybrids: Reappearance of tyrosine aminotransferase inducibility after loss of chromosomes. Proc. Natl. Acad. Sci. 68:3026–3030.PubMedCrossRefGoogle Scholar
  76. Weiss, M. C., and Ephrussi, B. 1966. Studies of interspecific (rat × mouse) somatic hybrids, I: Isolation, growth and evolution of the karyotype. Genetics 54:1095–1109.PubMedGoogle Scholar
  77. Weiss, M. C., and Green, H. 1967. Human-mouse hybrid cell lines containing partial complements of human chromosomes and functioning human genes. Proc. Natl. Acad. Sci. 58:1104–1111.PubMedCrossRefGoogle Scholar
  78. Wilson, S. H., Schrier, B. K., Farber, J. L., Thompson, E. J., Rosenberg, R. N., Blume, A. J., and Nirenberg, M. W. 1972. Markers for gene expression in cultured cells from the nervous system. J. Biol. Chem. 247:3159–3169.PubMedGoogle Scholar
  79. Yaffee, D. 1968. Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc. Natl. Acad. Sci. 61:477–483.CrossRefGoogle Scholar
  80. Yasumura, Y., Tashjian, A. H., and Sato, G. H. 1966. Establishment of four functional, clonal strains of animal cells in culture. Science 154:1186–1189.CrossRefGoogle Scholar
  81. Zanetta, J. P., Benda, P., Gombos, G., and Morgan, I. G. 1972. The presence of 2′ 3′-cyclic AMP 3′-phosphohydrolase in glial cells in tissue culture. J. Neurochem. 19: 881–883.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • John D. Minna
    • 1
  1. 1.Laboratory of Biochemical Genetics, National Heart and Lung InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations