Advertisement

Biochemical Characterization of a Clonal Line of Neuroblastoma

  • G. Augusti-Tocco
  • E. Parisi
  • F. Zucco
  • L. Casola
  • M. Romano
Part of the Current Topics in Neurobiology book series (CTNB)

Abstract

Study of the molecular mechanism of differentiation has been hampered by, among other difficulties, the complexity of the systems investigated, where several changes occur at the same time and overlap each other. The possibility of selecting a homogeneous cellular population in which only a limited step of cellular maturation occurs may provide a useful system for studying cell differentiation.

Keywords

Suspension Culture Monolayer Cell Neuroblastoma Cell Neurite Outgrowth Sucrose Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amano, T., Richelson, E., and Nirenberg, M. 1972. Neurotransmitter synthesis by neuroblastoma clones. Proc. Natl. Acad. Sci. 69:258–263.PubMedCrossRefGoogle Scholar
  2. Augusti-Tocco, G. 1971. In F. A. Morris, P. G. Nelson, and F. H. Ruddle (eds.). Contributions of clonal systems to neurobiology; Neurosci. Res. Bull., Vol. 11.Google Scholar
  3. Augusti-Tocco, G., and Sato, G. H. 1969. Establishment of functional clonal lines of neurons from mouse neuroblastoma. Proc. Natl. Acad. Sci. 64:311–315.PubMedCrossRefGoogle Scholar
  4. Augusti-Tocco, G., Sato, G. H., Claude, P., and Potter, D. D. 1970. Clonal cell lines of neurons, pp. 109–120. In H. A. Padykula (ed.) Control Mechanisms in the Expression of Cellular Phenotypes. Academic Press, New York.Google Scholar
  5. Augusti-Tocco, G., Casola, L., and Grasso, A. 1973. Neuroblastoma cells and 14-3-2, a brain specific protein. Submitted for publication.Google Scholar
  6. Bondy, S. C. 1972. Axonal migration of various ribonucleic acid species along the optic tract of the chick. J. Neurochem. 19:1769–1776.PubMedCrossRefGoogle Scholar
  7. Brown, J. C. 1972. Surface glycoprotein characteristic of the differentiated state of neuroblastoma C-1300 cells. Exptl. Cell Res. 69:440–442.CrossRefGoogle Scholar
  8. Buck, C. A., Glick, M. C., and Warren, L. 1970. A comparative study of glycoproteins from the surface of control and Rous sarcoma virus transformed hamster cells. Biochemistry 9:4567–4576.PubMedCrossRefGoogle Scholar
  9. Casola, L., Davis, G. A., and Davis, R. E. 1969. Evidence for RNA transport in rat optic nerve. J. Neurochem. 16:1037–1041.PubMedCrossRefGoogle Scholar
  10. Colby, C., and Edlin, G. 1970. Nucleotide pool levels in growing, inhibited, and transformed chick fibroblast cells. Biochemistry 9:917–920.PubMedCrossRefGoogle Scholar
  11. Darnell, J. E., Wall, R., and Tushinski, R. J. 1971. An adenylic acid-rich sequence in messenger RNA of Hela cells and its possible relationship to reiterated sites in DNA. Proc. Natl. Acad. Sci. 68:1321–1325.PubMedCrossRefGoogle Scholar
  12. DeKaban, A. S., Patton, V. M., and Cain, D. F. 1971. Structural and biochemical maturation of the cerebral pallium in rabbit fetuses: morphogenesis and lipids. J. Neurochem. 18:2451–2459.PubMedCrossRefGoogle Scholar
  13. Dravid, A. R., Pete N., and Mandel, P. 1971. An enzyme system in rat brain nuclei incorporating AMP into polyadenylate. J. Neurochem. 18:299–300.PubMedCrossRefGoogle Scholar
  14. Edmonds, M., Vaughan, M. H., and Nakazato, H. 1971. Poly-adenylic acid sequences in the heterogeneous nuclear RNA and rapidly-labeled polyribosomal RNA in Hela cells: possible evidence for a precursor relationship. Proc. Natl. Acad. Sci. 68:1336–1340.PubMedCrossRefGoogle Scholar
  15. Furshpan, E. J., and Potter, D. D. 1968. Low-resistance junctions between cells in embryos and tissue culture, pp. 95–127. In A. A. Moscona, and A. Monroy, (eds.). Current Topics of Developmental Biology, Vol. 3. Academic Press, New York.Google Scholar
  16. Giles, K. W., and Myers, A. 1965. An improved diphenylamine method for the estimation of DNA. Nature 206:93.CrossRefGoogle Scholar
  17. Goldschneider, I., and Moscona, A. A. 1972. Tissue-specific cell-surface antigens in embryonic cells. J. Cell Biol. 53:435–449.PubMedCrossRefGoogle Scholar
  18. Ham, R. G. 1963. An improved nutrient solution for diploid Chinese hamsters and human cell lines. Exptl. Cell Res. 29:515–526.PubMedCrossRefGoogle Scholar
  19. Jacob, M. 1971. RNA metabolism and differentiation of the central nervous system. In Abstracts 7th FEBS Meeting, Varna, p. 70.Google Scholar
  20. Lee, S. Y., Mendecki, J., and Brawerman, G. 1971. A polynucleotide segment rich in adenylic acid in the rapidly-labeled polyribosomal RNA component of mouse sarcoma 180 ascites cells. Prod. Natl. Acad. Sci. 68:1331–1335.CrossRefGoogle Scholar
  21. Lowry, O. H., Rosebrough, N. F., Farr, A. L., and Randall, R. G. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.PubMedGoogle Scholar
  22. Lumsden, C. E. 1968. Nervous tissue in culture, pp. 67–140. In G. H. Bourne (ed.) The Structure and Function of Nervous Tissue. Academic Press, New York.Google Scholar
  23. Mejbaum, W. 1939. Über die Bestimmung kleiner Pentosemengen, insbesondere in Derivaten der Adenylse. Hoppe-Seylers Z. Physiol. Chem. 258:117–120.CrossRefGoogle Scholar
  24. Nelson, P., Ruffner, W., and Nirenberg, M. 1969. Neuronal tumor cells with excitable membranes grown in vitro. Proc. Natl. Acad. Sci. 64:1004–1010.PubMedCrossRefGoogle Scholar
  25. Olmsted, J. B., Carlson, K., Klebe, R., Ruddle, F., and Rosenbaum, J. 1970. Isolation of microtubule protein from cultured mouse neuroblastoma cells. Proc. Natl. Acad. Sci. 65:129–136.PubMedCrossRefGoogle Scholar
  26. Penman, S. 1966. RNA metabolism in the Hela cell nucleus. J. Molec. Biol. 17:117–130.PubMedCrossRefGoogle Scholar
  27. Scherrer, K., and Darnell, J. E. 1962. Sedimentation characteristics of rapidly labeled RNA from Hela cells. Biochem. Biophys. Res. Commun. 7:486–490.PubMedCrossRefGoogle Scholar
  28. Schubert, D., and Jacob, F. 1970. 5-Bromodeoxyuridine-induced differentiation of a neuroblastoma. Proc. Natl. Acad. Sci. 67:247–254.PubMedCrossRefGoogle Scholar
  29. Schubert, D., Humphreys, S., Baroni, C., and Cohn, M. 1969. In vitro differentiation of a mouse neuroblastoma. Proc. Natl. Acad. Sci. 64:316–323.PubMedCrossRefGoogle Scholar
  30. Schubert, D., Humphreys, S., de Vitry, F., and Jacob, F. 1971. Induced differentiation of a neuroblastoma. Develop. Biol. 25:514–546.PubMedCrossRefGoogle Scholar
  31. Sidman, R. L. 1972. Cell interactions in developing mammalian central nervous system, pp. 1–13. In L. G. Silvestri (ed.). Cell Interactions. North-Holland, Amsterdam and London.Google Scholar
  32. Siman-Tov, R. and Sachs, L. 1972. Enzyme regulation in neuroblastoma cells. Europ. J. Biochem. 30:123–129.PubMedCrossRefGoogle Scholar
  33. Warren, L., Critchley, D., and Macpherson, I. 1972. Surface glycoproteins and glycolipids of chicken embryo cell transformed by a temperature-sensitive mutant of Rous sarcoma virus. Nature 235:275–278.PubMedCrossRefGoogle Scholar
  34. Weber, K., and Osborn, M. 1969. The reliability of molecular weight determinations by dodecylsulfate-polyacrylamide gel electrophoresis. J. Biol. Chem. 244:4406–4412.PubMedGoogle Scholar
  35. Weber, M. J. 1972. Ribosomal RNA turnover in contact inhibited cells. Nature 235:58–61.CrossRefGoogle Scholar
  36. Weinberg, R. A., Loening, U., Williems, M., and Penman, S. 1967. Acrylamide gel electrophoresis of Hela cell nucleolar RNA. Proc. Natl. Acad. Sci. 58:1088–1095.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • G. Augusti-Tocco
    • 1
  • E. Parisi
    • 1
  • F. Zucco
    • 1
  • L. Casola
    • 2
  • M. Romano
    • 2
  1. 1.Laboratorio di Embriologia MolecolareC. N. R., Arco FeliceNaplesItaly
  2. 2.Istituto Internazionale di Genetica e BiofisicaC. N. R.NaplesItaly

Personalised recommendations