Differentiation of Aggregating Brain Cell Cultures

  • Nicholas W. Seeds
Part of the Current Topics in Neurobiology book series (CTNB)


Although nerve was the first tissue used for in vitro culture (Harrison, 1907), only recently have the techniques for the maintenance, growth, and development of nerve tissue in vitro advanced. Most studies of brain differentiation in vitro use small explants. These explants from various regions of fetal and newborn mouse brain can undergo structural and bioelectrical development during culture (Bornstein, 1964; Crain, 1966; Wolf, 1970). In addition, functional connections are formed between separated spinal cord, brain stem, and neocortex fragments (Crain et al., 1968). However, the absence of sensitive biochemical procedures for detecting picomoles of product formation, in addition to the small size of the explants, has primarily limited the study of biochemical differentiation in explants to histochemical observations (Hosli and Hosli, 1970).


Mouse Brain Fetal Brain Choline Acetyltransferase Glutamate Decarboxylase Adult Mouse Brain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghajanian, G. K., and Bloom, F. E. 1967. The formation of synaptic junctions in developing rat brain: A quantitative electron microscopic study. Brain Res. 6:716–727.PubMedCrossRefGoogle Scholar
  2. Amano, T., Richelson, E., and Nirenberg, M. 1972. Neurotransmitter synthesis by neuroblastoma clones. Proc. Natl. Acad. Sci. 69:258–263.PubMedCrossRefGoogle Scholar
  3. Bagdasarian, G., and Hulanicka, D. 1965. Changes of mitochondrial glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase during brain development. Biochim. Biophys. Acta 99:367–369.PubMedGoogle Scholar
  4. Barkley, D. S., Rakin, L. L., Chaffee, J. K., and Wong, D. L. 1972. Cell separation of newborn mouse cerebellum by velocity sedimentation. J. Cell Biol. 55:15a.Google Scholar
  5. Bennett, D. S., and Giarman, N. J. 1965. Schedule of appearance of 5-hydroxytryptamine (serotonin) and associated enzymes in the developing rat brain. J. Neurochem. 12: 911–918.PubMedCrossRefGoogle Scholar
  6. Blume, A., Gilbert, F., Wilson, S., Farber, J., Rosenberg, R., and Nirenberg, M. 1970. Regulation of acetylcholinesterase in neuroblastoma cells. Proc. Natl. Acad. Sci. 67: 786–792.PubMedCrossRefGoogle Scholar
  7. Bonavita, V., Ponte, F., and Amore, G. 1964. Lactic dehydrogenase isoenzymes in nervous tissue IV. An ontogenetic study on the rat brain. J. Neurochem. 11:39–47.PubMedCrossRefGoogle Scholar
  8. Bornstein, M. B. 1964. Morphological development of neonatal mouse cerebral cortex in tissue culture, pp. 1–11. In P. Kellaway and T. Petersen (eds.). Neurological and Electroencephalographic Correlative Studies in Infancy. Grune & Stratton, New York.Google Scholar
  9. Bornstein, M. D., and Model, P. G. 1972. Development of synapses and myelin in cultures of dissociated embryonic mouse spinal cord, medulla and cerebrum. Brain Res. 37: 287–293.CrossRefGoogle Scholar
  10. Clark, R. B., and Perkins, J. P. 1971. Regulation of adenosine 3′:5′-cyclic monophosphate concentration in cultured human astrocytoma cells by catecholamines and histamine. Proc. Natl. Acad. Sci. 68:2757–2760.PubMedCrossRefGoogle Scholar
  11. Crain, S. M. 1966. Development of“organotypic” bioelectric activities in central nervous tissues during maturation in culture. Internat. Rev. Neurobiol. 9:1–43.CrossRefGoogle Scholar
  12. Crain, S. M., and Bornstein, M. B. 1972. Organotypic bioelectric activity in cultured reaggregates of dissociated rodent brain cells. Science 176:182–184.PubMedCrossRefGoogle Scholar
  13. Crain, S. M., Peterson, E. R., and Bornstein, M. B. 1968. Formation of functional interneuronal connexions between expiants of various mammalian central nervous tissues during development in vitro. pp. 13–40. In Growth of the Nervous System. Ciba Symposium; Little, Brown, Boston.Google Scholar
  14. DeLong, G. R. 1970. Histogenesis of fetal mouse isocortex and hippocampus in reaggregating cell cultures. Develop. Biol. 22:563–583.PubMedCrossRefGoogle Scholar
  15. DeLong, G. R., and Sidman, R. L. 1970. Alignment defect of reaggregating cells in cultures of developing brains of reeler mutant mice. Develop. Biol. 22:584–600.CrossRefGoogle Scholar
  16. Fleischmajer, R., and Billingham, R. E. 1968. Epithelial-Mesenchymal Interactions. Williams & Wilkins, Baltimore. 326 pp.Google Scholar
  17. Garber, B. B., and Moscona, A. A. 1972a. Reconstruction of brain tissue from cell suspensions I. Aggregation patterns of cells dissociated from different regions of the developing brain. Develop. Biol. 27:217–234.PubMedCrossRefGoogle Scholar
  18. Garber, B. B., and Moscona, A. A. 1972b. Reconstruction of brain tissue from cell suspensions. II. Specific enhancement of aggregation of embryonic cerebral cells by supernatant from homologous cell cultures. Develop. Biol. 27:235–243.PubMedCrossRefGoogle Scholar
  19. Gilman, A. G. 1970. A Protein binding assay for adenosine 3′,5′-phosphate. Proc. Nat. Acad. Sci. 67:305–311.PubMedCrossRefGoogle Scholar
  20. Gilman, A. G., and Nirenberg, M. 1971. Effect of catecholamines on the adenosine 3′:5′-cyclic monophosphate concentrations of clonal satellite cells of neurons. Proc. Natl. Acad. Sci. 68:2165–2168.PubMedCrossRefGoogle Scholar
  21. Gilman, A. G., and Schrier, B. K. 1972. Adenosine cyclic 3′,5′-monophosphate in fetal rat brain cell cultures. I. Effect of catecholamines. Molec. Pharmacol. 8:410–416.Google Scholar
  22. Gray, E. G. 1959. Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscope study. J. Anat. 93:420–439.PubMedGoogle Scholar
  23. Grobstein, C. 1964. Cytodifferentiation and its controls. Science 143:643–650.PubMedCrossRefGoogle Scholar
  24. Haber, B., Kuriyama, K., and Roberts, E. 1970. L-Glutamic acid decarboxylase: A new type in glial cells and human brain gliomas. Science 168:598–599.PubMedCrossRefGoogle Scholar
  25. Harrison, R. G. 1907. Observations on the living developing nerve fiber. Proc. Soc. Exp. Biol. (N.Y.) 4:140–150.Google Scholar
  26. Hildebrand, J. G., Barker, D. L., Herbert, E., and Kravitz, E. A. 1971. Screening for neurotransmitters: A rapid radiochemical procedure. J. Neurobiol. 2:231–246.PubMedCrossRefGoogle Scholar
  27. Himwich, W. H. 1964. Biochemical and neurophysiological development of the brain in the neonatal period. Internat. Rev. Neurobiol. 4:117–158.CrossRefGoogle Scholar
  28. Hösli, E., and Hösli, L. 1970. The presence of acetylcholinesterase in cultures of cerebellum and brain stem. Brain Res. 19:494–496.PubMedCrossRefGoogle Scholar
  29. Humphreys, T. 1963. Chemical dissolution and in vitro reconstruction of sponge cell adhension. I. Isolation and functional demonstration of the components involved. Develop. Biol. 8:27–47.CrossRefGoogle Scholar
  30. Karlsson, U. 1967. Observations on the postnatal development of neuronal structures in the lateral geniculate nucleus of the rat by electron microscopy. J. Ultrastruct. Res. 17:158–175.PubMedCrossRefGoogle Scholar
  31. Kuhlman, R. E., and Lowry, O. H. 1956. Quantitative histochemical changes during the development of the rat cerebral cortex. J. Neurochem. 1:173–180.PubMedCrossRefGoogle Scholar
  32. Lehrer, G. M., Bornstein, M. B., Weiss, C., and Silides, D. J. 1970. Enzymatic maturation of mouse cerebral neocortex in vitro and in situ. Exptl. Neurol. 26:595–606.CrossRefGoogle Scholar
  33. Lilien, J. E. 1968. Specific enhancement of cell aggregation in vitro. Develop. Biol. 17:657–678.PubMedCrossRefGoogle Scholar
  34. Maker, H. S., Lehrer, G. M., Weissbarth, S., and Bornstein, M. B. 1972. Changes in LDH isoenzymes of brain developing in situ and in vitro. Brain Res. 44:189–196.PubMedCrossRefGoogle Scholar
  35. Margoliash, E., Schenck, J. R., Hargie, M. P., Burokar, S., Richter, W. R., Barlow, G. H., and Moscona, A. A. 1965. Characterization of specific cell aggregating materials from sponge cells. Biochem. Biophys. Res. Commun. 20:383–388.CrossRefGoogle Scholar
  36. McQuiddy, P., and Lilien, J. 1971. Sialic acid and cell aggregation. J. Cell Sci. 9:823–833.PubMedGoogle Scholar
  37. Model, P. G., Bornstein, M. B., Crain, S. M., and Pappas, G. D. 1971. An electron microscopic study of the development of synapses in cultured fetal mouse cerebrum continuously exposed to xylocaine. J. Cell Biol. 40:362–371.CrossRefGoogle Scholar
  38. Morris, J. E., and Moscona, A. A. 1970. Induction of glutamine synthetase in embryonic retina: Its dependence on cell interactions. Science 167:1736–1738.PubMedCrossRefGoogle Scholar
  39. Morris, J. E., and Moscona, A. A. 1971. The induction of glutamine synthetase in cell aggregates of embryonic neural retina: Correlations with differentiation and multicellular organization. Develop. Biol. 25:420–444.PubMedCrossRefGoogle Scholar
  40. Moscona, A. 1956. Development of heterotypic combinations of dissociated embryonic chick cells. Proc. Soc. Exptl. Biol. 92:410–416.Google Scholar
  41. Moscona, A. 1957. The development in vitro of chimeric aggregates of dissociated embryonic chick and mouse cells. Proc. Natl. Acad. Sci. 43:184–193.PubMedCrossRefGoogle Scholar
  42. Moscona, A. 1961. Effect of temperature on adhesion to glass and histogenetic cohesion of dissociated cells. Nature 190:408–409.PubMedCrossRefGoogle Scholar
  43. Moscona, A. A. 1965. Recombination of dissociated cells and the development of cell aggregates, pp. 489–529. In B. M. Willmer (ed.). Cells and Tissues in Culture. Academic Press, New York.Google Scholar
  44. Moscona, A. A. 1971. Embryonic and neoplastic cell surfaces: Availability of receptors for concanavalin A and wheat germ agglutinin. Science 171:905–907.PubMedCrossRefGoogle Scholar
  45. Moscona, M. H., and Moscona, A. A. 1963. Inhibitions of adhesiveness and aggregation of dissociated cells by inhibitors of protein and RNA synthesis. Science 142:1070–1071.PubMedCrossRefGoogle Scholar
  46. Pessac, B., and Defendi, V. 1972. Cell aggregation: Role of acid mucopolysaccharides. Science 175:898–900.PubMedCrossRefGoogle Scholar
  47. Rall, T. W., and Sattin, A. 1970. Factors influencing the accumulation of cyclic AMP in brain tissue, pp. 113–134. In P. Greengard and E. Costa (eds.). Role of Cyclic AMP in Cell function. Raven Press, New York.Google Scholar
  48. Roth, S., McGuire, E. J., and Roseman, S. 1971. An assay for intercellular adhesive specificity. J. Cell. Biol. 51:525–535.PubMedCrossRefGoogle Scholar
  49. Schmidt, M. J., Palmer, E. C., Dettbarn, W.-D., and Robison, G. A. 1970. Cyclic AMP and adenyl cyclase in the developing rat brain. Develop. Biol. 3:53–67.Google Scholar
  50. Seeds, N. W. 1971. Biochemical differentiation in reaggregating brain cell culture. Proc. Natl. Acad. Sci. 68:1858–1861.PubMedCrossRefGoogle Scholar
  51. Seeds, N. W. 1972. Reassembling the brain. New Scientist 54:12–14.Google Scholar
  52. Seeds, N. W. 1973. Biochemical differentiation in reaggregating brain cell culture. II. Monoamine oxidase, catechol-O-methyltransferase lactate dehydrogenase and S-100 protein. (Submitted for publication).Google Scholar
  53. Seeds, N. W., and Gilman, A. G. 1971. Norepinephrine stimulated increase of cyclic AMP levels in developing mouse brain cell cultures. Science 174:292.PubMedCrossRefGoogle Scholar
  54. Seeds, N. W., and Vatter, A. E. 1971. Synaptogenesis in reaggregating brain cell culture. Proc. Natl. Acad. Sci. 68:3219–3222.PubMedCrossRefGoogle Scholar
  55. Sidman, R. L., Green, M. C., and Appel, S. H. 1965. Catalog of the Neurological Mutants of the Mouse. Harvard University Press, Cambridge, Mass.Google Scholar
  56. Silberstein, S. D., Shein, H. M., and Berv, K. R. 1972. Catechol-O-methyl transferase and monoamine oxidase activity in cultured rodent astrocytoma cells. Brain Res. 41:245–248.PubMedCrossRefGoogle Scholar
  57. Steinberg, M. S. 1970. Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among population of embryonic cells. J. Exptl. Zool. 173:395–433.CrossRefGoogle Scholar
  58. Trinkaus, J. P., and Groves, P. W. 1955. Differentiation in culture of mixed aggregates of dissociated tissue cells. Proc. Natl. Acad. Sci. 41:787–795.PubMedCrossRefGoogle Scholar
  59. Varon, S., and Raiborn, C. W., Jr. 1969. Dissociation, fractionation, and culture of embryonic brain cells. Brain Res. 12:180–199.PubMedCrossRefGoogle Scholar
  60. Werner, I., Peterson, G. R., and Shuster, L. 1971. Choline acetyltransferase and acetylcholinesterase in cultured brain cells from chick embryos. J. Neurochem. 18:141–151.PubMedCrossRefGoogle Scholar
  61. Wilson, S. H. Schrier, B. K., Farber, J. L., Thompson, E. J., Rosenberg, R. N., Blume, A. J., and Nirenberg, M. W. 1972. Markers for gene expression in cultured cells from the nervous system. J. Biol. Chem. 247:3159–3169.PubMedGoogle Scholar
  62. Wolf, M. K. 1970. Anatomy of cultured mouse cerebellum. Organotypic migration of granule cells demonstrated by silver impregnation of normal and mutant cultures. J. Comp. Neurol. 140:281–298.PubMedCrossRefGoogle Scholar
  63. Woodward, D. J., Hoffer, B. J., Siggins, G. R., and Bloom, F. E. 1971. The ontogenetic development of synaptic junctions, synaptic activation and responsiveness to neurotransmitter substances in rat cerebellar purkinje cells. Brain Res. 34:73–97.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Nicholas W. Seeds
    • 1
  1. 1.Department of Biophysics and Genetics and Department of PsychiatryUniversity of Colorado Medical CenterDenverUSA

Personalised recommendations