The Metabolism of Glycosphingolipids and Glycosaminoglycans

  • Allen C. Stoolmiller
  • Glyn Dawson
  • Albert Dorfman
  • Joseph P. KennedyJr.
Part of the Current Topics in Neurobiology book series (CTNB)


The role of complex carbohydrate-containing substances in cell physiology has attracted increased attention as a result of the appreciation of their importance in cell-surface phenomena and the existence of a large number of heritable diseases characterized by defects in degradation of these substances. In general, the hexosamine-containing macromolecules of eukaryotic cells may be classified as glycosphingolipids, glycoproteins, and glycosaminoglycans. Since there is no available information concerning the synthesis of glycoproteins by clonal lines derived from the nervous system in tissue culture, the metabolism of this class of substances will not be considered in this chapter.


Hyaluronic Acid Sialic Acid Heparan Sulfate Chondroitin Sulfate Uronic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abood, L. G., and Abul-Haj, S. K. 1956. Histochemistry and characterization of hyaluronic acid in axons of peripheral nerves. J. Neurochem. 1:119–125.PubMedGoogle Scholar
  2. Andrews, J. M., Cancilla, P. A., Grippo, J., and Menkes, J. H. 1971. Globoid cell leukodystrophy (Krabbe’s disease): morphological and biochemical studies. Neurology 21:337–353.PubMedGoogle Scholar
  3. Arteta, J. L. 1956. Effect of hyaluronidase on the cat brain. Proc. Soc. Exptl. Biol. Med. 91:440–442.Google Scholar
  4. Augusti-Tocco, G., and Sato, G. 1969. Establishment of functional clonal lines of neurons from mouse neuroblastoma. Proc. Natl. Acad. Sci. 64:311–315.PubMedGoogle Scholar
  5. Austin, J. H., and Lehfeldt, D. 1965. Studies in globoid (Krabbe) leukodystrophy. III. Significance of experimentally-produced globoid-like elements in rat white matter and spleen. J. Neuropathol. Exptl. Neurol. 24:265–289.Google Scholar
  6. Bachhawat, B. K., Balasubramanian, K. A., Balasubramanian, A. S., Singh, M., George, E., and Chandrasekaran, E. V. 1972. Chemistry and metabolism of glycosaminoglycans of the nervous system, pp. 51–71. In V. Zambotti, G. Tettamanti, and M. Arrigoni (eds.). Glycolipids, Glycoproteins, and Mucopolysaccharides of the Nervous System, Plenum Press, New York.Google Scholar
  7. Baker, J. R., Cifonelli, J. A., Mathews, M. B., and Rodén, L. 1969. Mannose-containing glycopeptides from keratosulfate (KS). Fed. Proc. 28:605.Google Scholar
  8. Baker, J. R., Rodén, L., and Stoolmiller, A. C. 1972. Biosynthesis of chondroitin sulfate proteoglycan. Xylosyl transfer to Smith-degraded cartilage proteoglycan and other exogenous acceptors. J. Biol. Chem. 247:3838–3847.PubMedGoogle Scholar
  9. Balasubramanian, A. S., and Bachhawat, B. K. 1964. Enzymic transfer of sulphate from 3′-phosphoadenosine 5′-phosphosulphate to mucopolysaccharides in rat brain. J. Neurochem. 11:877–885.PubMedGoogle Scholar
  10. Benda, P., Lightbody, J., Sato, G., Levine, L., and Sweet, W. 1968. Differentiated rat glial cell strain in tissue culture. Science 161:370–371.PubMedGoogle Scholar
  11. Bhavanandan, V. P., and Meyer, K. 1968. Studies on keratosulfates: (methylation, desulfation, and acid hydrolysis studies on old human rib cartilage keratosulfate). J. Biol. Chem. 243:1052–1059.PubMedGoogle Scholar
  12. Boström, H., and Odeblad, E. 1953. Autoradiographic observations on the uptake of S35-labelled sodium sulphate in the nervous system of the adult rat. Acta Psychiat. Neurol. Scand. 28:5–8.Google Scholar
  13. Brady, R. O., Johnson, W. G., and Uhlendorf, B. W. 1971. Identification of heterozygous carriers of lipid storage diseases. Am. J. Med. 51:423–431.PubMedGoogle Scholar
  14. Brante, G. 1957. Hexosamine compounds in the nervous system. A preliminary report, pp. 112–120. In D. Richter (ed.). Metabolism of the Central Nervous System. Pergamon Press, London.Google Scholar
  15. Brimacombe, J. S., and Webber, J. M. 1964. Mucopolysaccharides. Chemical Structure, Distribution and Isolation. B.B.A. Library, Vol. 6. Elsevier, Amsterdam. 181 pp.Google Scholar
  16. Chandrasekaran, E. V., and Bachhawat, B. K. 1969. Isolation and characterization of glycosaminoglycans in peripheral nerve and spinal cord of monkey. J. Neurochem. 16:1529–1532.PubMedGoogle Scholar
  17. Christensen-Lou, H. O., and Clausen, J. 1968. Polar lipids of oligodendrogliomas. J. Neurochem. 15:263–264.Google Scholar
  18. Christensen-Lou, H. O., Clausen, J., and Biering, F. 1965. Phospholipids and glycolipids of tumors in the central nervous system. J. Neurochem. 12:619–627.Google Scholar
  19. Church, R. L., Tanzer, M. L., and Pfeiffer, S. E. 1973. Collagen and procollagen production by a clonal line of Schwann cells, Proc. Natl. Acad. Sci. 70:1943–1946.PubMedGoogle Scholar
  20. Cifonelli, J. A. 1968. Reaction of heparitin sulfate with nitrous acid. Carbohyd. Res. 8: 233–242.Google Scholar
  21. Cifonelli, J. A., and Dorfman, A. 1962. The uronic acid of heparin. Biochem. Biophys. Res. Commun. 7:41–45.PubMedGoogle Scholar
  22. Clausen, J., and Hansen, A. 1963. Acid mucopolysaccharides of human brain: Identification by means of infra-red analysis. J. Neurochem. 10:165–168.PubMedGoogle Scholar
  23. Cumar, F. A., Fishman, P. H., and Brady, R. O. 1972. Analogous reactions for the biosynthesis of monosialo-and disialo-gangliosides in brain. J. Biol. Chem. 246:5075–5084.Google Scholar
  24. Cunningham, W. L., and Goldberg, J. M. 1968. The determination of glycosaminoglycans present in various mammalian brains. Biochem. J. 110:35p–36p.PubMedGoogle Scholar
  25. D’Abramo, F., and Lipmann, F. 1957. The formation of adenosine-3′-phosphate-5′-phosphosulfate in extracts of chick embryo cartilage and its conversion into chondroitin sulfate. Biochim. Biophys. Acta 25:211–213.PubMedGoogle Scholar
  26. Dawson, G., Kemp, S. F., Stoolmiller, A. C., and Dorfman, A. 1971. Biosynthesis of glycosphingolipids by mouse neuroblastoma (NB41A), rat glia (RGC-6) and human glia (CHB-4) in cell culture. Biochem. Biophys. Res. Commun. 44:687–694.PubMedGoogle Scholar
  27. Dawson, G., Kemp, S. F., and Stoolmiller, A. C. 1972a. Biosynthesis of glycosphingolipids in cloned cell strains of neurological origin. Trans. Am. Soc. Neurochem. 3:68.Google Scholar
  28. Dawson, G., Matalon, R., and Dorfman, A. 1972b. Glycosphingolipids of cultured human skin fibroblasts. I. Characterization and metabolism in normal fibroblasts. J. Biol. Chem. 247:5944–5950.Google Scholar
  29. Dawson, G., Matalon, R., and Dorfman, A. 1972c. Glycosphingolipids of cultured human skin fibroblasts. II. Characterization and metabolism in fibroblasts from patients with inborn errors of glycosphingolipid and mucopolysaccharide metabolism. J. Biol. Chem. 247:5951–5958.Google Scholar
  30. Dehm, P., and Prockop, D. J. 1971. Synthesis and extrusion of collagen by freshly isolated cells from chick embryo tendon. Biochim. Biophys. Acta 240:358–369.Google Scholar
  31. Dekirmenjian, H., and Brunngraber, E. G. 1969. Distribution of protein-bound N-acetyl-neuraminic acid in subcellular particulate fractions prepared from rat whole brain. Biochim. Biophys. Acta 177:1–10.PubMedGoogle Scholar
  32. Den, H., Schultz, A. M., Basu, M., and Roseman, S. 1971. Glycosyltransferase activities in normal and polyoma-transformed BHK cells. J. Biol. Chem. 246:2721–2723.PubMedGoogle Scholar
  33. Derry, D. M., and Wolfe, L. 1967. Gangliosides in isolated neurons and glia. Science 158:1450–1452.PubMedGoogle Scholar
  34. DiCesare, J. L., and Dain, J. A. 1972. The enzymic synthesis of ganglioside. IV. UDP-N-acetylgalactosamine: (N-acetylneuraminyl)-galactosylglucosyl ceramide N-acetylgal-actosaminyltransferase in rat brain. Biochim. Biophys. Acta 231:385–393.Google Scholar
  35. Dorfman, A., and Ho, P.-L. 1970. Synthesis of acid mucopolysaccharides by glial tumor cells in tissue culture. Proc. Natl. Acad. Sci. 66:495–499.PubMedGoogle Scholar
  36. Dorfman, A., and Matalon, R. 1972. The mucopolysaccharidoses, pp. 1218–1272. In J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson (eds.). The Metabolic Basis for Inherited Disease. McGraw-Hill, New York.Google Scholar
  37. Eisenman, R. A., Balasubramanian, A. S., and Marx, W. 1967. 3′-Phosphoadenylylsulfate: desulfoheparin sulfotransferase associated with a postmicrosomal particulate mastocytoma fraction. Arch. Biochem. Biophys. 119:387–397.Google Scholar
  38. Elam, J. S., Goldberg, J. M., Radin, N. S., and Agranoff, B. W. 1970. Rapid axonal transport of sulfated mucopolysaccharide proteins. Science 170:458–460.PubMedGoogle Scholar
  39. Embree, L. J., Hess, H. H., and Shein, H. M. 1972. Biochemical structural components of cloned N-nitrosomethylurea-induced astrocytoma cells grown subcutaneously. Neurology 194:201.Google Scholar
  40. Fishman, P. H., McFarland, V. W., Mora, P. T., and Brady, R. O. 1972. Ganglioside biosynthesis in mouse cells: Glycosyltransferase activities in normal and virally transformed lines. Biochem. Biophys. Res. Commun. 48:48–57.PubMedGoogle Scholar
  41. Forman, D. S., and Ledeen, R. 1972. Axonal transport of gangliosides in goldfish optic nerve. Science 177:630–633.PubMedGoogle Scholar
  42. Fransson, L.-Å. 1970. Structure and metabolism of the proteoglycan of dermatan sulfate, pp. 823–842. In E. A. Balazs (ed.). NATO Advanced Study Institute on the Chemistry and Molecular Biology of the Intercellular Matrix, Vol. 2. Academic Press, London.Google Scholar
  43. Fransson, L.-Å. and Rodén, L. 1967a. Structure of dermatan sulfate. I. Degradation by testicular hyaluronidase. J. Biol. Chem. 242:4161–4169.PubMedGoogle Scholar
  44. Fransson, L.-Å., and Rodén, L. 1967b. Structure of dermatan sulfate. II. Characterization of products obtained by hyaluronidase digestion of dermatan sulfate. J. Biol. Chem. 242:4170–4175.Google Scholar
  45. George, E., Singh, M., and Bachhawat, B. K. 1970. The nature of sulphation of uronic acid containing glycosaminoglycans catalysed by brain sulphotransferase. J. Neurochem. 17:189–200.PubMedGoogle Scholar
  46. Godman, G. C., and Porter, K. R. 1960. Chondrogenesis, studied with the electron microscope. J. Biophys. Biochem. Cytol. 8:719–760.PubMedGoogle Scholar
  47. Goldberg, J. M., and Cunningham, W. L. 1970. Incorporation of [35S] sulphate into the glycosaminoglycans of rat brain. Biochem. J. 120:15P.Google Scholar
  48. Gopal, K., Grossi, E., Paoletti, P., and Usardi, M. 1964. Lipid Composition of human intracranial tumors: A biochemical study. Acta Neurochim. (Wien) 11:333–341.Google Scholar
  49. Grossfeld, H. 1957. Positive mucin clot test in supernates of cultures of avian embryonic brain. Proc. Soc. Exptl. Biol. Med. 96:844–846.Google Scholar
  50. Guha, A., Northover, B. J., and Bacchawat, B. K. 1960. Incorporation of radioactive sulphate into chondroitin sulphate in the developing brain of rats. J. Sci. Ind. Res. 19C:287-289.Google Scholar
  51. Hamberger, A., and Svennerholm, L. 1971. Composition of gangliosides and phospholipids of neuronal and glial cell enriched fractions. J. Neurochem. 18:1821–1829.PubMedGoogle Scholar
  52. Hamerman, D. 1970. Protein-hyaluronate linkage. New Engl. J. Med. 282:165.Google Scholar
  53. Hamerman, D., Rojkind, M., and Sandson, J. 1966. Analyses of the protein moiety of hyaluronate. Fed. Proc. 25:790.Google Scholar
  54. Helting, T., and Lindahl, U. 1971. Occurrence and biosynthesis of ß-glucuronidic linkages in heparin. J. Biol. Chem. 246:5442–5447.PubMedGoogle Scholar
  55. Helting, T., and Rodén, L. 1968. Biosynthesis of chondroitin sulfate. I. Galactosyl transfer in the formation of the carbohydrate-protein linkage region. J. Biol. Chem. 244: 2790–2798.Google Scholar
  56. Helting, T., and Rodén, L. 1969. Biosynthesis of chondroitin sulfate. II. Glucuronosyl transfer in the formation of the carbohydrate-protein linkage region. J. Biol. Chem. 244:2799–2805.PubMedGoogle Scholar
  57. Hess, A. 1953. The ground substance of the central nervous system revealed by histochemical staining. J. Comp. Neurol. 98:69–92.PubMedGoogle Scholar
  58. Horner, A. A. 1971. Macromolecular heparin from rat skin. Isolation, characterization, and depolymerization with ascorbate. J. Biol. Chem. 246:231–239.PubMedGoogle Scholar
  59. Horner, A. A. 1972. Enzymic depolymerization of macromolecular heparin as a factor in control of lipoprotein lipase activity. Proc. Natl. Acad. Sci. 69:3469–3473.PubMedGoogle Scholar
  60. Horwitz, A. L., and Dorfman, A. 1968. Subcellular sites for synthesis of chondromucoprotein of cartilage. J. Cell Biol. 38:358–368.PubMedGoogle Scholar
  61. Hydén, H., and Pigon, A. 1960. A cytophysiological study of the functional relationship between oligodendroglial cells and nerve cells of Deiters’ nucleus. J. Neurochem. 6: 57–72.PubMedGoogle Scholar
  62. Jacobson, B., and Davidson, E. A. 1962. Biosynthesis of uronic acids by skin enzymes. II. Uridine diphosphate-D-glucuronic acid-5-epimerase. J. Biol. Chem. 237:638–642.PubMedGoogle Scholar
  63. Jones, J. P., Ramsey, R. B., Aexel, R. T., and Nicholas, H. J. 1972. Lipid biosynthesis in neuron-enriched and glial-enriched fractions of rat brain: Ganglioside biosynthesis. Life Sci. 11:309–315.Google Scholar
  64. Katzman, R. L. 1971. On arabinose as a constituent of hyaluronic acid from bovine brain. J. Neurochem. 18:1187–1190.PubMedGoogle Scholar
  65. Kaufman, B., Basu, S., and Roseman, S. 1967. Studies on the biosynthesis of gangliosides, pp. 187–213. In S. M. Aronson and B. W. Volk (eds.). Inborn Disorders of Sphingolipid Metabolism. Pergamon Press, Oxford.Google Scholar
  66. Knecht, J., Cifonelli, J. A., and Dorfman, A. 1967. Structural studies on heparitin sulfate of normal and Hurler tissues. J. Biol. Chem. 242:4652–4661.PubMedGoogle Scholar
  67. Kornfeld, S., Kornfeld, R., Neufeld, E. F., and O’Brien, P. J. 1964. The feedback control of sugar nucleotide biosynthesis in liver. Proc. Natl. Acad. Sci. 52:371–379.PubMedGoogle Scholar
  68. Kraemer, P. M. 1971a. Heparan sulfates of cultured cells. I. Membrane associated and cell-sap species in Chinese hamster cells. Biochemistry 10:1437–1445PubMedGoogle Scholar
  69. Kraemer, P. M. 1971b. Heparan sulfates of cultured cells. II. Acid-soluble and precipitable species of different cell lines. Biochemistry 10:1445–1451.PubMedGoogle Scholar
  70. Kraemer, P. M., and Tobey, R. A. 1972. Cell-cycle dependent desquamation of heparan sulfate from the cell surface. J. Cell Biol. 55:713–717.PubMedGoogle Scholar
  71. Lapetina, E. G., Soto, E. F., and DeRobertis, E. 1967. Gangliosides and acetylcholinesterase in isolated membranes of the rat brain cortex. Biochim. Biophys. Acta 135: 33–41.PubMedGoogle Scholar
  72. Ledeen, R. 1966. The chemistry of gangliosides. J. Am. Oil. Chem. Soc. 43:57–66.PubMedGoogle Scholar
  73. Lindahl, U. 1966. Further characterization of the heparin-protein linkage region. Biochim. Biophys. Acta 130:368–382.PubMedGoogle Scholar
  74. Lindahl, U. 1970. Structure of heparin, heparan sulfate and their related proteoglycans, pp. 943–960. In E. A. Balazs (ed.). NATO Advanced Study Institute on the Chemistry and Molecular Biology of the Intracellular Matrix, Vol. 2. Academic Press, London.Google Scholar
  75. Lindahl, U., and Axelsson, O. 1971. Identification of iduronic acid as the major sulfated uronic acid of heparin. J. Biol. Chem. 246:74–82.PubMedGoogle Scholar
  76. Lindahl, U., and Bäckström, G. 1972. Biosynthesis of L-iduronic acid in heparin: Epimerization of D-glucuronic acid on the polymer level. Biochem. Biophys. Res. Commun. 46:985–991.PubMedGoogle Scholar
  77. Linker, A., Hoffman, P., Sampson, P., and Meyer, K. 1958. Heparatin sulfate. Biochem. Biophys. Acta 29:443–444.PubMedGoogle Scholar
  78. Maccioni, H. J., Arce, A., and Caputto, R. 1971. The biosynthesis of gangliosides. Labelling of rat brain gangliosides in vivo. Biochem. J. 125:1131–1137.PubMedGoogle Scholar
  79. Margolis, R. U. 1967. Acid mucopolysaccharides and proteins of bovine whole brain, white matter and myelin. Biochim. Biophys. Acta 141:91–102.PubMedGoogle Scholar
  80. Margolis, R. U. 1969. Mucopolysaccharides, pp. 245–260. In A. Lajtha (ed.). Handbook of Neurochemistry, Vol. I. Plenum Press, New York.Google Scholar
  81. Margolis, R., and Atherton, D. M. 1972. The heparan sulfate of rat brain. Biochim. Biophys. Acta 273:368–373.PubMedGoogle Scholar
  82. Marshall, R. D. 1972. Glycoproteins. Ann. Rev. Biochem. 41:673–702.PubMedGoogle Scholar
  83. Mathews, M. B. 1967. Macromolecular evolution of connective tissue. Biol. Rev. 42:499–551.PubMedGoogle Scholar
  84. Meyer, K., Grumbach, M. M., Linker, A., and Hoffman, P. 1958. Excretion of sulfated mucopolysaccharide in gargolylism (Hurler’s syndrome). Proc. Soc. Exptl. Biol. Med. 97:275–279.Google Scholar
  85. Mora, P. T., Brady, R. O., Bradley, R. M., and McFarland, V. W. 1969. Gangliosides in DNA virus-transformed and spontaneously transformed tumorigenic mouse cell lines. Proc. Natl. Acad. Sci. 63:1290–1296.PubMedGoogle Scholar
  86. Neufeld, E. F., and Hall, C. W. 1965. Inhibition of UDP-D-glucose dehydrogenase by UDP-D-xylose: A possible regulatory mechanism. Biochem. Biophys. Res. Commun. 19:456–461.PubMedGoogle Scholar
  87. Nevo, Z., and Dorfman, A. 1972. Stimulation of chondromucoprotein synthesis in chondrocytes by extracellular chondromucoprotein. Proc. Natl. Acad. Sci. 69:2069–2072.PubMedGoogle Scholar
  88. Nikaido, H., and Hassid, W. Z. 1971. Biosynthesis of saccharides from glycopyranosyl esters of nucleoside pyrophosphates (“sugar nucleotides”). Advan. Carbohyd. Chem. Biochem. 26:351–483.Google Scholar
  89. Norton, W. T., and Poduslo, S. E. 1971. Neuronal perikarya and astroglia in rat brain. Chemical composition during myelination. J. Lipid Res. 12:84–90.PubMedGoogle Scholar
  90. O’Brien, J. S., and Sampson, R. L. 1965. Lipid composition of the normal human brain: Gray matter, white matter, and myelin. J. Lipid Res. 6:537–544.PubMedGoogle Scholar
  91. Onodera, K., Hirona, S., Horiuchi, F., and Kashimura, N. 1966. A comparative study of some animal brains with regard to content of acidic mucopolysaccharide. Carbohyd. Res. 3:234–238.Google Scholar
  92. Parodi, A. J., Behrens, N. H., Leloir, L. F., and Carminatti, H. 1972. The role of polyprenol-bound saccharides as intermediates in glycoprotein synthesis in the liver. Proc. Natl. Acad. Sci. 69:3268–3272.PubMedGoogle Scholar
  93. Pfeiffer, S. E., and Dawson, G. 1972. Glycosphingolipid composition of a neoplastic clone of Schwann cells. (Unpublished data).Google Scholar
  94. Pfeiffer, S. E., and Wechsler, W. 1972. Biochemically differentiated neoplastic clone of Schwann cells. Proc. Natl. Acad. Sci. 69:2885–2889.PubMedGoogle Scholar
  95. Pigman, W. 1957. Introduction: Structure and stereochemistry of the monosaccharides, pp. 1–76. In W. Pigman (ed.). The Carbohydrates—Chemistry, Biochemistry, Physiology. Academic Press, New York.Google Scholar
  96. Poduslo, S. E., and Norton, W. T. 1972. Isolation and some chemical properties of oligodendroglia from calf brain. J. Neurochem. 19:727–736.PubMedGoogle Scholar
  97. Radin, N. S. 1970. Brain cerebroside metabolism and possible implication for clinical problems, pp. 137–163. In J. Bernsohn and H. J. Grossman (eds.). Lipid Storage Diseases. Academic Press, New York.Google Scholar
  98. Rapport, M. M., and Graf, L. 1969. Immunochemical reactions of lipids. Progr. Allergy 13:273–331.Google Scholar
  99. Ringertz, N. R. 1956. On the sulphate metabolism of the mouse brain. Exptl. Cell Res. 10:230–233.PubMedGoogle Scholar
  100. Robinson, J. D., Jr., and Green, J. P. 1962. Sulfomucopolysaccharides in brain. Yale J. Biol. Med. 35:248–256.PubMedGoogle Scholar
  101. Rodén, L. 1968. Linkage of acid mucopolysaccharides to protein, pp. 185–202. In Fourth International Conference on Cystic Fibrosis of the Pancreas (Mucoviscidosis), Berne/ Grindelwald 1966, Part II. Karger, Basel.Google Scholar
  102. Rodén, L. 1970. Biosynthesis of acidic glycosaminoglycans (mucopolysaccharides), pp. 345–442. In W. H. Fishman (ed.). Metabolic Conjugation and Metabolic Hydrolysis, Vol. II. Academic Press, New York.Google Scholar
  103. Rodén L., Baker, J. R., Schwartz, N., Stoolmiller, A. C., Yamagata, S., and Yamagata, T. 1972. Some aspects of the structure and biosynthesis of connective tissue proteoglycans, pp. 345–385. In R. Piras and H. G. Pontis (eds.). Biochemistry of the Glycosidic Linkage: An Integrated View. Academic Press, New York.Google Scholar
  104. Roseman, S. 1970. The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion. Chem. Phys. Lipids 5:270–297.PubMedGoogle Scholar
  105. Saxena, S., George, E., Kokrady, S., and Bachhawat, B. K. 1971. Sulfate metabolism in developing rat brain. Study with subcellular fractions. Ind. J. Biochem. Biophys. 8: 1–8.Google Scholar
  106. Scher, I., and Hamerman, D. 1972. Isolation of human synovial-fluid hyaluronate by density-gradient ultracentrifugation and evaluation of its protein content. Biochem. J. 126:1073–1080.PubMedGoogle Scholar
  107. Schiller, S., and Dorfman, A. 1959. The isolation of heparin from mast cells of the normal rat. Biochim. Biophys. Acta 31:278–280.PubMedGoogle Scholar
  108. Schiller, S., Slover, G. A., and Dorfman, A. 1961. A method for the separation of acid mucopolysaccharides: Its application to the isolation of heparin from the skin of rats. J. Biol. Chem. 236:983–987.PubMedGoogle Scholar
  109. Shapiro, D., and Flowers, H. M. 1961. Synthetic studies on sphingolipids. VI. The total synthesis of cerasine and phrenosine. J. Am. Chem. Soc. 83:3327–3336.Google Scholar
  110. Shein, H. M., Britva, A., Hess, H. H., and Selkoe, D. J. 1970. Isolation of hamster brain astroglia by in vitro cultivation and subcutaneous growth, and content of cerebroside, ganglioside, RNA and DNA. Brain Res. 19:497–501.PubMedGoogle Scholar
  111. Silbert, J. E. 1967. Biosynthesis of heparin. III. Formation of a sulfated glycosaminoglycan with a microsomal preparation from mast cell tumors. J. Biol. Chem. 242:5146–5152.PubMedGoogle Scholar
  112. Silbert, J. E., and DeLuca, S. 1969. Biosynthesis of chondroitin sulfate. III. Formation of a sulfated glycosaminoglycan with microsomal preparation from chick embryo cartilage. J. Biol. Chem. 244:876–881.PubMedGoogle Scholar
  113. Singh, M., and Bachhawat, B. K. 1965. The distribution and variation with age of different uronic acid-containing mucopolysaccharides in brain. J. Neurochem. 12:519–525.PubMedGoogle Scholar
  114. Singh, M., and Bachhawat, B. K. 1969. Isolation and characterization of glycosaminoglycans in human brain of different age groups. J. Neurochem. 15:249–258.Google Scholar
  115. Singh, M., Chandrasekaran, E. V., Cherian, R., and Bachhawat, B. K. 1969. Isolation and characterization of glycosaminoglycans in brain of different species. J. Neurochem. 16:1157–1162.PubMedGoogle Scholar
  116. Slagel, D. E., Dittmer, J. C., and Wilson, C. B. 1967. Lipid composition of human glial tumour and adjacent brain. J. Neurochem. 14:789–798.PubMedGoogle Scholar
  117. Snyder, R. A., Brady, R. O., and Kornblith, P. L. 1970. Ganglioside patterns of cultured human glioma cells. Neurology 20:412 (abst.).Google Scholar
  118. Sourander, P., Hansson, H.-A., Olsson, Y., and Svennerholm, L. 1966. Experimental studies on the pathogenesis of leucodystrophies. II. The effect of sphingolipids on various cell types in cultures from the nervous system. Acta Neuropathol. 6:231–242.PubMedGoogle Scholar
  119. Stary, Z., Wardi, A., and Turner, D. 1964. Galacturonic acid in hydrolysates of defatted human brain. Biochim. Biophys. Acta 83:242–244.PubMedGoogle Scholar
  120. Stoffel, W. 1971. Sphingolipids. Ann. Rev. Biochem. 40:57–82.PubMedGoogle Scholar
  121. Stoolmiller, A. C. 1972. Biosynthesis of mucopolysaccharides by neuroblastoma cells in tissue culture. Fed. Proc. 31:910 Abs.Google Scholar
  122. Stoolmiller, A. C., and Bittner, S. J. 1972. Localization of sialyltransferase activity in the plasma membrane of cultured mouse neuroblastoma cells. J. Cell Biol. 55:251a.Google Scholar
  123. Stoolmiller, A. C., 3d Dorfman, A. 1969. Metabolism of glycosaminoglycans, pp. 241–275. In M. Florkin and E. Stotz (eds.). Carbohydrate Metabolism, Vol. 17. Elsevier, Amsterdam.Google Scholar
  124. Stoolmiller, A. C., Dorfman, A., and Sato, G. 1972. Rat origin of CHB cells. Science 178: 1308.Google Scholar
  125. Suzuki, Y., and Suzuki, K. 1970. Krabbe’s globoid cell leukodystrophy: Deficiency of galactocerebrosidase in serum, leukocytes and fibroblasts. Science 171:73–75.Google Scholar
  126. Suzuki, K., Poduslo, J. F., and Poduslo, S. E. 1968. Further evidence for a specific ganglioside fraction closely associated with myelin. Biochim. Biophys. Acta 152:576–586.PubMedGoogle Scholar
  127. Svennerholm, L. 1964. The gangliosides. J. Lipid Res. 5:145–155.PubMedGoogle Scholar
  128. Sweeley, C. C., and Dawson, G. 1969. Lipids of the erythrocyte, pp. 172–228. In G. A. Jamieson and T. W. Greenwalt (eds.). Red Cell Membrane, J. B. Lippincott, Philadelphia.Google Scholar
  129. Szabo, M., and Roboz-Einstein, E. 1962. Acidic polysaccharides in the central nervous system. Arch. Biochem. Biophys. 98:406–412.Google Scholar
  130. Tamai, Y., Matsukawa, S., and Satake, M. 1970. Gangliosides in neuron. J. Biochem. (Tokyo) 69:235–238.Google Scholar
  131. Telser, A., Robinson, H. C., and Dorfman, A. 1966. The biosynthesis of chondroitin sulfate. Arch. Biochem. Biophys. 116:458–465.PubMedGoogle Scholar
  132. Vos, J., Kuriyama, K., and Roberts, E. 1969. Distribution of acid mucopolysaccharides in subcellular fractions of mouse brain. Brain Res. 12:172–179.PubMedGoogle Scholar
  133. Wardi, A. H., Allen, W. S., Turner, D. L., and Stary, Z. 1969. Hyaluronate-peptide linkage group. Biochim. Biophys. Acta 192:151–154.PubMedGoogle Scholar
  134. Wiegandt, H. 1967. The subcellular localization of gangliosides in the brain. J. Neurochem. 14:671–674.PubMedGoogle Scholar
  135. Wiegandt, H. 1970. Gangliosides of extraneuronal tissue. Chem. Phys. Lipids 5:198–204.PubMedGoogle Scholar
  136. Winterburn, P. J., and Phelps, C. F. 1970. Relevance of feedback inhibition applied to the biosynthesis of hexosamines. Nature 228:1311–1313.PubMedGoogle Scholar
  137. Yogeeswaran, G., Sheinin, R., Wherrett, J. R., and Murray, R. K. 1972. Studies on the glycosphingolipids of normal and virally transformed 3T3 mouse fibroblasts. J. Biol. Chem. 247:5146–5158.PubMedGoogle Scholar
  138. Young, I. J., and Custod, J. T. 1972. Isolation of glycosaminoglycans and variation with age in the feline brain. J. Neurochem. 19:923–926.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Allen C. Stoolmiller
    • 1
  • Glyn Dawson
    • 1
  • Albert Dorfman
    • 1
  • Joseph P. KennedyJr.
    • 2
  1. 1.Departments of Pediatrics and BiochemistryLaRabida-University of Chicago InstituteUSA
  2. 2.Mental Retardation Research Center, Pritzker School of MedicineUniversity of ChicagoChicagoUSA

Personalised recommendations