DNA Turnover and Strand Breaks in Escherichia coli

  • Philip Hanawalt
  • Anthony Grivell
  • Hiroaki Nakayama
Part of the Basic Life Sciences book series


The extent of DNA turnover has been measured in a dnaB mutant of Escherichia coli, temperature sensitive for semiconservative DNA replication. At the nonpermissive temperature about 0.02% of the deoxynucleotides in DNA are exchanged per generation period. This turnover rate is markedly depressed in the presence of rifampicin. During thymine starvation strand breaks accumulate in the DNA of E. coli strains that are susceptible to thymineless death. Rifampicin suppresses the appearance of these breaks, consistent with our hypothesis that transcription may be accompanied by repairable single-strand breaks in DNA.

DNA turnover is enhanced severalfold in strands containing 5-bromodeoxy-uridine in place of thymidine, possibly because the analog (or the deoxyuridine, following debromination) is sometimes recognized and excised.


Strand Break Micrococcus Luteus Nonpermissive Temperature Repair Synthesis Thymine Starvation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, M. L. and Hewitt, R. R. (1971). J. Bacteriol. 105, 733–738.PubMedGoogle Scholar
  2. Bendigkeit, H. and Hanawalt, P. C., (1968). Bacteriol. Proc. Abstr. G103.Google Scholar
  3. Bonhoeffer, F. (1966). Z. Vererbungsl. 98, 141.PubMedCrossRefGoogle Scholar
  4. Carrier, W. L. and Setlow, R. B. (1974). Fed. Proc. 33, 5 (abstr.).Google Scholar
  5. Cooper, P. K. and Hanawalt, P. C. (1972). Proc. Nat. Acad. Sci. U.S.A. 69, 1156–1160.CrossRefGoogle Scholar
  6. Couch, J. and Hanawalt, P. C. (1967). Biochem. Biophys. Res. Commun. 29, 779–784.PubMedCrossRefGoogle Scholar
  7. Hanawalt, P. C. and Cooper, P. K. (1971). Methods Enzymol. 21D, 221–230.CrossRefGoogle Scholar
  8. Hanawalt, P. C., Pettijohn, D., Pauling, E. C., Brunk, C. F., Smith, D. W., Kanner, L. C. and Couch, J. L. (1968). Cold Spring Harbor Symp. Quant. Biol. 33, 187–194.PubMedCrossRefGoogle Scholar
  9. Hutchinson, F. (1973). Quart. Rev. Biophys. 6, 201–246.CrossRefGoogle Scholar
  10. Grivell, A. R. and Hanawalt, P. C. (1972). Biophys. Soc. Abstr. 37a, Biophys. J. 12.Google Scholar
  11. Grivell, A. R., Grivell, M. and Hanawalt, P. C. (1975). J. Mol. Biol. (in press).Google Scholar
  12. Nakayama, H. and Hanawalt, P. (1975). J. Bacteriol. 121, 537–547.PubMedGoogle Scholar
  13. Nakayama, H., Pratt, A. and Hanawalt, P. (1972). J. Mol. Biol. 70, 281–289.PubMedCrossRefGoogle Scholar
  14. Pauling, C. and Hanawalt, P. (1965). Proc. Nat. Acad. Sci. U.S.A. 54, 1728–1735.CrossRefGoogle Scholar
  15. Reichenbach, D. L., Schaiberger, G. E. and Sallman, B. (1971). Biochem. Biophys. Res. Commun. 42, 23–30.PubMedCrossRefGoogle Scholar
  16. Sedgwick, S. G. and Bridges, B. A. (1971). J. Bacteriol. 108, 1422–1423.PubMedGoogle Scholar
  17. Walker, J. R. (1970). J. Bacteriol. 104, 1391–1392.PubMedGoogle Scholar
  18. Worcha, M. G. and Warner, H. R. (1973). J. Biol. Chem. 248, 1746–1750.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Philip Hanawalt
    • 1
  • Anthony Grivell
    • 1
  • Hiroaki Nakayama
    • 1
  1. 1.Department of Biological SciencesStanford UniversityStanfordUSA

Personalised recommendations