Maintenance of DNA and Repair of Apurinic Sites

  • Walter G. Verly
Part of the Basic Life Sciences book series


Escherichia coli cells contain an enzyme which hydrolyzes a phosphodiester bond near each apurinic site in double-stranded DNA. This endonuclease is specific for apurinic sites; it has no effect on normal DNA, and its action on alkylated DNA is restricted to apurinic sites. In vitro incubation with the endonuclease for apurinic sites, DNA polymerase I, and ligase permits repair of DNA containing apurinic sites. The endonuclease for apurinic sites might thus play a role in cell survival after a treatment with alkylating agents; as DNA spontaneously loses purines, the enzyme might also play a role in the maintenance of a normal DNA in every cell. Indeed, an endonuclease for apurinic sites has been found not only in bacteria but also in animal and plant cells; it is very active in thermophilic bacteria.


Sedimentation Velocity Sucrose Gradient Thermophilic Bacterium Phosphodiester Bond Sedimentation Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brakier, L. and Verly, W. G. (1970). Biochim. Biophys. Acta 213, 296.PubMedGoogle Scholar
  2. Duerwald, H. and Hoffmann-Berling, H. (1968). J. Mol. Biol. 34, 331.CrossRefGoogle Scholar
  3. Friedberg, E. C., Hadi, S. M. and Goldthwait, D. A. (1969). J. Biol. Chem. 244, 5879. Gillespie, C. J., Gislason, G. S., Dugle, D. L. and Chapman, J. D. (1972). Radiat. Res. 21, 272.Google Scholar
  4. Lawley, P. D., Lethbridge, J. H., Edwards, P. A. and Shooter, K. V. (1969). J. Mol. Biol. 39, 181.PubMedCrossRefGoogle Scholar
  5. Lindahl, T. and Andersson, A. (1972). Biochemistry, 11, 3618.PubMedCrossRefGoogle Scholar
  6. Lindahl, T. and Karlström, 0. (1973). Biochemistry, 12, 5151.PubMedCrossRefGoogle Scholar
  7. Lindahl, T. and Nyberg, B. (1972). Biochemistry, 11, 3610.PubMedCrossRefGoogle Scholar
  8. Ljungquist, S. and Lindahl, T. (1974a). J. Biol. Chem. 249, 1530.PubMedGoogle Scholar
  9. Ljungquist, S. and Lindahl, T. (1974b). J. Biol. Chem. 249, 1536.PubMedGoogle Scholar
  10. Paquette, Y., Crine, P. and Verly, W. G. (1972). Can. J. Biochem. 50, 1199.Google Scholar
  11. Strauss, B. S. and Robbins, M. (1968). Biochim. Biophys. Acta 161, 68.PubMedGoogle Scholar
  12. Tamm, C., Shapiro, H. S., Lipshitz, R. and Chargaff, E. (1953). J. Biol. Chem. 203,673. Verly, W. G., Gossard, F. and Crine, P. (1974). Proc. Nat. Acad. Sci. U.S.A. 71,2273. Verly, W. G. and Paquette, Y. (1970). Can. Fed. Biol. Soc., 685.Google Scholar
  13. Verly, W. G. and Paquette, Y. (1972a). Can. J. Biochem. 50, 217.PubMedGoogle Scholar
  14. Verly, W. G. and Paquette, Y. (1972b). Fed. Proc. 31(2),918 (abstr. 4001).Google Scholar
  15. Verly, W. G. and Paquette, Y. (1973). Can. J. Biochem. 51, 1003.PubMedCrossRefGoogle Scholar
  16. Verly, W. G., Paquette, Y. and Thibodeau, L. (1973). Nature New Biol. 244, 67.PubMedGoogle Scholar
  17. Verly, W. G., Paquette, Y., Tremblay, C. and Thibodeau, L. (1972). Can. Fed. Biol. Soc., 673.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Walter G. Verly
    • 1
  1. 1.Department of BiochemistryUniversity of MontrealMontrealCanada

Personalised recommendations