Advertisement

SOS Repair Hypothesis: Phenomenology of an Inducible DNA Repair Which is Accompanied by Mutagenesis

  • Miroslav Radman
Part of the Basic Life Sciences book series

Abstract

A hypothesis was proposed several years ago that Escherichia coli possesses an inducible DNA repair system (“SOS repair”) which is also responsible for induced mutagenesis. Some characteristics of the SOS repair are (1) it is induced or activated following damage to DNA, (2) it requires de novo protein synthesis, (3) it requires several genetic functions of which the best-studied are recA + and lex + of E. coli, and (4) the physiological and genetic requirements for the expression of SOS repair are suspiciously similar to those necessary for the prophage induction. The SOS repair hypothesis has already served as the working hypothesis for many experiments, some of which are briefly reviewed. Also, some speculations are presented to stimulate further discussions and experimental tests.

Keywords

Replication Fork Pyrimidine Dimer Prophage Induction Pantoyl Lactone Collective Basic Research 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames, B. N., Durston, W. E., Yamasaki, E. and Lee, F. D. (1973). Proc. Nat. Acad. Sci. U.S.A. 70, 2281–2285.CrossRefGoogle Scholar
  2. Blanco, M. and Devoret, R. (1973). Mutat. Rea 17, 293–305.CrossRefGoogle Scholar
  3. Bowersock, D. and Moses, R. E. (1973). J. Biol. Chem. 248, 7449–7455.PubMedGoogle Scholar
  4. Boyle, J. M. and Setlow, R. B. (1970). J. Mol. BioL 51, 131–144.PubMedCrossRefGoogle Scholar
  5. Bressler, S. E., Lanzov, V. A. and Lujaniec-Blinkova, A. A. (1968). Mol. Gen. Genet. 102, 169–284.Google Scholar
  6. Bridges, B. A. (1972). Nature New Biol. 240, 52.PubMedCrossRefGoogle Scholar
  7. Castellazzi, M., George, J. and Buttin, G. (1972a). Mol. Gen. Genet. 119, 139–152.PubMedCrossRefGoogle Scholar
  8. Castellazzi, M., George, J. and Buttin, G. (1972b). Mol Gen. Genet. 119, 153–174.PubMedCrossRefGoogle Scholar
  9. Defais, M., Fauquet, P., Radman, M. and Errera, M. (1971). Virology 43, 495–503.PubMedCrossRefGoogle Scholar
  10. Drakulie, M. and Errera, M. (1959). Biochim. Biophys Acta, 31, 459–463.CrossRefGoogle Scholar
  11. George, J., Devoret, R. and Radman, M. (1974). Proc. Nat. Acad. Sci. U.S.A. 71, 144–147.CrossRefGoogle Scholar
  12. Goldthwait, D. and Jacob, F. (1964). C.R. Acad. Sci. Paris 259, 661–664.PubMedGoogle Scholar
  13. Greenberg, J., Green, M. H. L. and Bar-Nun, N. (1970). Mol. Gen. Genet. 107, 209–214.CrossRefGoogle Scholar
  14. Hart, M. G. R. and Ellison, J. (1970). J. Gen. Virol 8, 197–208.PubMedCrossRefGoogle Scholar
  15. Howard-Flanders, P. (1968a). Ann. Rev. Biochem. 31, 175–200.CrossRefGoogle Scholar
  16. Howard-Flanders, P. (1968b). Advan. Biol. Med. Phys. 12, 299–317.Google Scholar
  17. Jacob, F. and Wollman, E. L. (1955). Ann. Inst. Pasteur 88, 724–749.Google Scholar
  18. Kingsbury, D. T. and Helinski, D. R. (1973). Genetics 74, 17–31.PubMedGoogle Scholar
  19. Kohiyama, M. (1968). Cold Spring Harbor Symp. Quant. Biol. 33, 317–331.PubMedCrossRefGoogle Scholar
  20. Lehmann, A. R. (1972). Eur. J. Biochem. 31, 438–445.PubMedCrossRefGoogle Scholar
  21. Luria, S. E. (1952). J. Cell. Comp. Physiol. 39, 119–123.Google Scholar
  22. Marinus, M. G. and Adelberg, E. A. (1970). J. Bacteriol 104, 1266–1272.PubMedGoogle Scholar
  23. Miura, A. and Tomizawa, J. (1968). Mol. Gen. Genet. 103, 1–10.PubMedCrossRefGoogle Scholar
  24. Moody, E. E. M., Low, K. B. and Mount, D. W. (1973). Mol Gen. Genet. 121, 197–205.CrossRefGoogle Scholar
  25. Monk, M. and Gross, J. (1971). Mol. Gen. Genet. 110, 299–306.PubMedCrossRefGoogle Scholar
  26. Noack, D. and Klaus, S. (1972). Mol Gen. Genet. 115, 216–224.PubMedCrossRefGoogle Scholar
  27. Ono, J. and Shimazu, Y. (1966). Virology, 29, 295–302.PubMedCrossRefGoogle Scholar
  28. Poddar, R. K. and Sinsheimer, R. L. (1971). Biophys. J. 11, 355–369.PubMedCrossRefGoogle Scholar
  29. Radman, M. (1971). Nature New Biol. 230, 277–278.PubMedGoogle Scholar
  30. Radman, M. (1974). In Molecular and Environmental Aspects of Mutagenesis (Prakash, L., Sherman, F., Miller, M. W., Lawrence, C. W. and, Taber, H. W., eds.), C. C. Thomas, Publ., Springfield, Illinois, pp. 128–142.Google Scholar
  31. Radman, M. and Devoret, R. (1971). Virology 43, 504–506.PubMedCrossRefGoogle Scholar
  32. Radman, M., Cordone, L., Krsmanovic-Simic, D. and Errera, M. (1970). J. Mol. Biol. 49, 203–212.PubMedCrossRefGoogle Scholar
  33. Rupp, W. D. and Howard-Flanders, P. (1968). J. Mol. Biol. 31, 291–304.PubMedCrossRefGoogle Scholar
  34. Sesnowitz-Horn, S. and Adelberg, E. A. (1968). Cold Spring Harbor Symp. Quant. Biol. 33, 393–402.PubMedCrossRefGoogle Scholar
  35. Setlow, R. B. (1967). Brookhaven Symp. Biol. 20, 1.Google Scholar
  36. Tessman, E. S. and Ozaki, T. (1960). Virology 12, 431–449.PubMedCrossRefGoogle Scholar
  37. Weigle, J. J. (1953). Proc. Nat. Acad. Sci. U.S.A. 39, 628–636.CrossRefGoogle Scholar
  38. Westergaard, O. (1970). Biochim. Biophys. Acta 213, 36–44.Google Scholar
  39. Willets, N. S. and Clark, A. J. (1969). J. Bacterol. 97, 231–239.Google Scholar
  40. Witkin, E. M. (1969). Ann. Rev. Microbiol. 23, 487–513.CrossRefGoogle Scholar
  41. Witkin, E. M. (1974). Proc. Nat. Acad. Sci. U.S.A. 71, 1930–1934.CrossRefGoogle Scholar
  42. Witkin, E. M. and George, D. L. (1973). Genetics 73, 91–108.PubMedGoogle Scholar
  43. Worcel, A. (1970). J. Mol. Biol. 52, 371–386.PubMedCrossRefGoogle Scholar
  44. Zajdela, M. and Latarjet, R. (1973). C.R. Acad Sci. Paris 277, 1073–1076.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Miroslav Radman
    • 1
  1. 1.Laboratoire de Biophysique et RadiobiologieUniversité libre de BruxellesBelgium

Personalised recommendations