Advertisement

The Beginning of an Investigation of the Role of recF in the Pathways of Metabolism of Ultraviolet-Irradiated DNA in Escherichia coli

  • Robert H. Rothman
  • Takesi Kato
  • Alvin J. Clark
Part of the Basic Life Sciences book series

Abstract

The recF gene in Escherichia coli was discovered as a locus of mutations which block recombination in a recB recC sbcB strain but not in a recB + recC + sbcB + strain (Horii and Clark, 1974). To understand the significance which was placed on this result it is necessary to know the functions of the recB, recC, and sbcB genes. The recB and recC genes determine exonuclease V (ExoV), an enzyme whose characteristics have been worked out in several laboratories (see e.g. Goldmark and Linn, 1972). Mutations in these genes inactivate ExoV and produce recombination deficiency (see e.g. Clark, 1973) which can be alleviated by sbcB mutations (Kushner et al., 1971). sbcB is thus a gene whose mutations indirectly suppress the recombination deficiency provoked by the absence of ExoV. The product of the sbcB gene is exonuclease I (ExoI) (Kushner et al., 1971, Yajko et al., 1974), an enzyme which degrades single-stranded DNA from 3′-OH termini (Lehman and Nussbaum, 1964). In recB recC strains it is presumably the inactivation of ExoI by sbcB mutations which leads to recombination ability, while it is the presence of ExoI which produces recombination deficiency. To explain this, Horii and Clark (1974) hypothesized a pathway of recombination normally inhibited by ExoI which was released from inhibition by the sbcB mutations. This pathway, called the RecF pathway after the recF gene, was considered to be independent of the pathway of recombination involving the recB and recC genes, the RecBC pathway.

Keywords

Pyrimidine Dimer Quadruple Mutant Molecular Weight Increase Unirradiated Control Covalent Closure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brendel, M. and Haynes, R. H. (1973). Mol. Gen. Genet. 125, 197–216.PubMedCrossRefGoogle Scholar
  2. Clark, A. J. (1973). Ann. Rev. Genet. 7, 67–86.PubMedCrossRefGoogle Scholar
  3. Cooper, P. K. and Hanawalt, P. C. (1972). Proc. Nat. Acad. Sci. U.S.A. 69, 1156–1160.CrossRefGoogle Scholar
  4. Goldmark, P. J. and Linn, S. (1972). J. Biol. Chem. 247, 1849–1860.PubMedGoogle Scholar
  5. Horii, Z. I. and Clark, A. J. (1974). J. Mol. Biol. 80, 327–344.CrossRefGoogle Scholar
  6. Ganesan, A. K. (1974). J. Mol. Biol. 87, 103–119.PubMedCrossRefGoogle Scholar
  7. Kelley, R. R., Atkinson, M. R., Huberman, J. and Kornberg, A. (1969). Nature 224, 495–501.CrossRefGoogle Scholar
  8. Kushner, S. R., Nagaishi, H., Templin, A. and Clark, A. J. (1971). Proc. Nat. Acad. Sci. U.S.A. 68, 824–827.CrossRefGoogle Scholar
  9. Lehman, I. R. and Nussbaum, A. L. (1964). J. Biol. Chem. 239, 2628–2636PubMedGoogle Scholar
  10. Ley, R. P. (1973). Photochem. Photobiol. 18, 87–95.PubMedCrossRefGoogle Scholar
  11. Radman, M. (1974). Molecular and Environmental Aspects of Mutagenesis. Thomas, Spring-field, Ill.Google Scholar
  12. Rupp, W. D. and Howard-Flanders, P. (1968). J. Mol. Biol. 31, 291–304.PubMedCrossRefGoogle Scholar
  13. Rupp, W. D., Wilde, C. E., III, Reno, D. L. and Howard-Flanders, P. (1971). J. Mol. Biol. 61, 25–44.PubMedCrossRefGoogle Scholar
  14. Setlow, P. and Kornberg, A. (1972). J. Biol. Chem. 247, 232–240.PubMedGoogle Scholar
  15. Smith, K. C. and Meun, D. H. C. (1970). J. Mol. Biol. 51, 459–472.PubMedCrossRefGoogle Scholar
  16. Tait, R. C., Harris, A. C. and Smith, D. W. (1974). Proc. Nat. Acad. Sci. U.S.A. 71, 675–679.CrossRefGoogle Scholar
  17. Taylor, A. L. and Trotter, C. D. (1972). Bacteriol Rev. 36, 504–524.PubMedGoogle Scholar
  18. Weigle, J., Meselson, M. and Paigen, K. (1959). J. Mol. Biol. 1, 379–386.CrossRefGoogle Scholar
  19. Witkin, E. M. and George, D. L. (1973). Genetics 73, (suppl.) 91–108.PubMedGoogle Scholar
  20. Yajko, D. M., Valentine, M. C. and Weiss, B. (1974). J. Mol. Biol. 85, 323–343.PubMedCrossRefGoogle Scholar
  21. Youngs, D. A. and Smith, K. C. (1973a). J. Bacterool. 116, 175–182.Google Scholar
  22. Youngs, D. A. and Smith, K. C. (1973b). Nature New Biol. 244, 240–241.PubMedGoogle Scholar
  23. Youngs, D. A., van der Schueren, E. and Smith, K. C. (1974). J. Bacteriol. 117, 717–725.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Robert H. Rothman
    • 1
  • Takesi Kato
    • 1
  • Alvin J. Clark
    • 2
  1. 1.Department of GeneticsUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Molecular BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations