Repair by Genetic Recombination in Bacteria: Overview

  • Paul Howard-Flanders
Part of the Basic Life Sciences book series

Abstract

DNA molecules that have been damaged in both strands at the same level are not subject to repair by excision but instead can be repaired through recombination with homologous molecules. Examples of two-strand damage include postreplication gaps opposite pyrimidine dimers, two-strand breaks produced by X-rays, and chemically induced interstrand cross-links. In ultraviolet-irradiated bacteria, the newly synthesized DNA is of length equal to the interdimer spacing. With continued incubation, this low-molecular-weight DNA is joined into highmolecular-weight chains (postreplication repair), a process associated with sister exchanges in bacteria. Recombination is initiated by pyrimidine dimers opposite postreplication gaps and by interstrand cross-links that have been cut by excision enzymes. The free ends at the resulting gaps presumably initiate the exchanges. Postreplication repair in Escherichia coli occurs in recB and recC but is greatly slowed in recF mutants. RecB and recC are the structural genes for exonuclease V, which digests two-stranded DNA by releasing oligonucleotides first from one strand and then from the other. The postreplication sister exchanges in ultraviolet-irradiated bacteria result in the distribution of pyrimidine dimers between parental and daughter strands, indicating that long exchanges involving both strands of each duplex occur.

The Rl restriction endonuclease from E. coli has been used to cut the DNA of a bacterial drug-resistance transfer factor with one nuclease-sensitive site, and also DNA from the frog Xenopus enriched for ribosomal 18S and 28S genes. The fragments were annealed with the cut plasmid DNA and ligated, producing a new larger plasmid carrying the eukaryotic rDNA and able to infect and replicate in E. coli.

Keywords

Lymphoma Recombination Pyrimidine Photolysis Kelly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benbow, R., Zuccarelli, A., Davis, G. and Sinsheimer, R. L. (1974). J. Virol. 13, 898–907.PubMedGoogle Scholar
  2. Boyce, R. P. and Howard-Flanders, P. (1964). Z. Vererbungsl. 95, 345–350.PubMedCrossRefGoogle Scholar
  3. Braun, A. and Grossman, L. (1974). Proc. Nat. Acad. Sci. U.S.A. 71, 1838–1842.CrossRefGoogle Scholar
  4. Brookes, P. and Lawley, P. D. (1961). Biochem. J. 80, 496–503.PubMedGoogle Scholar
  5. Buhl, S. N., Stillman, R. M., Setlow, R. B. and Regan, J. D. (1972). Biophy. J. 12, 1183–1191.CrossRefGoogle Scholar
  6. Buhl, S. N., Setlow, R. B. and Regan, J. D. (1973). Biophys. J. 13., 1265–1275.Google Scholar
  7. Chiu, S. F. H. and Rauth, A. M. (1972). Biochim. Biophys. Acta 259, 164–174.PubMedGoogle Scholar
  8. Clark, A. J. and Margulies, A. D. (1965). Proc. Nat. Acad. Sci. U.S.A. 53, 451–459.CrossRefGoogle Scholar
  9. Cleaver, J. E. and Thomas, G. H. (1969). Biochem. Biophys. Res. Commun. 36, 203–208.PubMedCrossRefGoogle Scholar
  10. Cole, R. S. (1971). J. Bacteriol. 106, 143–149.PubMedGoogle Scholar
  11. Cole, R. S. (1973). Proc. Nat. Acad. Sci U.S.A. 70, 1064–1068.CrossRefGoogle Scholar
  12. Cooper, P. K. and Hanawalt, P. C. (1972). Proc. Nat. Acad. Sci. U.S.A. 69, 1156–1160.CrossRefGoogle Scholar
  13. Danna, K and Nathans, D. (1971). Proc. Nat. Acad. Sci. U.S.A. 12, 2913–2917.CrossRefGoogle Scholar
  14. Dawid, I. B., Brown, D. D. and Reeder R. H. (1970). J. Mol. Biol. 51, 341–360.PubMedCrossRefGoogle Scholar
  15. Fogel, S. and Mortimer, R. K. (1969). Proc. Nat. Acad. Sci. U.S.A. 62, 96–103.CrossRefGoogle Scholar
  16. Fogel, S. and Mortimer, R. K. (1970). Mol. Gen. Genet. 109, 177–189.CrossRefGoogle Scholar
  17. Francke, B. and Ray, D. S. (1971). J. Mol. Biol. 61, 565–586.PubMedCrossRefGoogle Scholar
  18. Ganesan, A. K. (1973). Proc. Nat. Acad. Sci USA. 70, 2753–2756.PubMedCrossRefGoogle Scholar
  19. Ganesan, A. K. (1974). J. Mol. Biol. 87, 103–119.PubMedCrossRefGoogle Scholar
  20. Ganesan, A. K. and Smith, K. C. (1971). Mol. Gen. Genet. 113, 285–296.PubMedCrossRefGoogle Scholar
  21. George, J. and Devoret, R. (1971). Mol. Gen. Genet. 111, 103–119.PubMedCrossRefGoogle Scholar
  22. German, J. and LaRock, J. (1969). Tex. Rep. Biol. Med 27, 409–418.PubMedGoogle Scholar
  23. Goldmark, P. J. and Linn, S. (1972). J. Biol. Chem. 247, 1849–1860.PubMedGoogle Scholar
  24. Hedgepeth, J., Goodman, H. M. and Boyer, H. W. (1972). Proc. Nat. Acad. Sci. U.S.A. 69, 3448–3452.CrossRefGoogle Scholar
  25. Holliday, R. (1964). Genet. Res. 5, 282–304.CrossRefGoogle Scholar
  26. Horii, Z. I. and Clark, A. J. (1973). J. Mol. Biol. 80, 327–344.PubMedCrossRefGoogle Scholar
  27. Howard-Flanders, P. and Lin, P.-F. (1973). Genetics 73 (suppl.), 85–90.PubMedGoogle Scholar
  28. Howard-Flanders, P. and Theriot, L. (1966). Genetics 53, 1137–1150.PubMedGoogle Scholar
  29. Howard-Flanders, P., Rupp, W. D., Wilkins, B. M. and Cole, R. S. (1968). Cold Spring Harbor Symp. Quant. Biol. 33, 195–208.PubMedCrossRefGoogle Scholar
  30. Howard-Flanders, P., Rupp, W. D., Wilde, C. E. and Reno, D. L. (1971). In Recent Advances in Microbiology. Tenth International Congress of Microbiology, pp. 271–282, Mexico D.F.Google Scholar
  31. Iyer, V. N. and Rupp, W. D. (1971). Biochim. Biophys. Acta 228, 117–126.PubMedGoogle Scholar
  32. Jacob, F. and Wollman, E. L. (1953). Cold Spring Harbor Symp. Quant. Biol. 18, 101–121.PubMedCrossRefGoogle Scholar
  33. Kelly, R. B., Atkinson, M. R., Huberman, J. A. and Kornberg, A. (1969). Nature 224, 495–501.CrossRefGoogle Scholar
  34. Kohn, K. W., Steigbigel, N. H. and Spears, C. L. (1965). Proc. Nat. Acad. Sci. U.S.A. 53, 1154–1161.CrossRefGoogle Scholar
  35. Lawley, P. D. and Brookes, P. (1965). Nature 206, 480–481.PubMedCrossRefGoogle Scholar
  36. LeClerc, J. and Setlow, J. (1972). J. Bacteriol. 110, 930–934.PubMedGoogle Scholar
  37. Lehmann, A. R. (1972). J. Mol. Biol. 66, 319–337.PubMedCrossRefGoogle Scholar
  38. Ley, R. D. (1973). Photochem. Photobiol. 18, 87–95.PubMedCrossRefGoogle Scholar
  39. Luria, S. E. (1947). Proc. Nat. Acad. Sci. U.S.A. 9, 253–264.CrossRefGoogle Scholar
  40. McCarron, M., Gelbart, W. and Chovnick, A. (1974). Genetics 76, 289–299.PubMedGoogle Scholar
  41. Meyn, R. E. and Humphrey, R. M. (1971). Biophys. J. 11, 295–301.PubMedCrossRefGoogle Scholar
  42. Morpurgo, G. (1963). Genetics 48, 1259–1263.PubMedGoogle Scholar
  43. Morrow, J. F., Cohen, S. N., Chang, A. C. Y., Boyer, H. W., Goodman, H. M. and Helling, R. B. (1974). Proc. Nat. Acad. Sci. U.S.A. 71, 1743–1747.CrossRefGoogle Scholar
  44. Mosig, G. (1963). Cold Spring Harbor Symp. Quant. Biol. 28, 35–41.CrossRefGoogle Scholar
  45. Rauth, A. M., Tammemagi, M. and Hunter, G. (1974). Biophys. J. 14, 209–220.PubMedCrossRefGoogle Scholar
  46. Rupp, W. D. and Howard-Flanders, P. (1968). J. Mol. Biol. 31, 291–304.PubMedCrossRefGoogle Scholar
  47. Rupp, W. D., Zipser, E., von Essen, C., Reno, D. L., Prosnitz, L. and Howard-Flanders, P. (1970). In Time and Dose Relationship in Radiation Biology as Applied to Radiotherapy, pp. 1–13. Brookhaven National Laboratory, Long Island, New York.Google Scholar
  48. Rupp, W. D., Wilde, C. E., Reno, D. L. and Howard-Flanders, P. (1971). J. Mol. Biol. 61, 25–44.PubMedCrossRefGoogle Scholar
  49. Shaw, M. W. and Cohen, M. M. (1965). Genetics 51, 181–191.PubMedGoogle Scholar
  50. Sigal, N. and Alberts, B. (1972). J. Mol. Biol. 71, 789–793.PubMedCrossRefGoogle Scholar
  51. Smith, K. C. and Meun, D. H. C. (1970). J. Mol. Biol. 51, 459–472.PubMedCrossRefGoogle Scholar
  52. Stadler, D. R. and Towe, A. M. (1972). Genetics 68, 401–413.Google Scholar
  53. Witkin, E. (1969). Ann. Rev. Genet. 3, 525–552.CrossRefGoogle Scholar
  54. Yamamoto, N. (1967). Biochem. Biophys. Res. Commun. 27, 263–269.PubMedCrossRefGoogle Scholar
  55. Zipser, E. (1973). Ph.D. Thesis, Yale University.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Paul Howard-Flanders
    • 1
  1. 1.Department of Therapeutic RadiologyYale University School of MedicineNew HavenUSA

Personalised recommendations