Advertisement

Repair Replication in Permeabilized Escherichia Coli

  • Warren E. Masker
  • Thomas J. Simon
  • Philip C. Hanawalt
Part of the Basic Life Sciences book series

Abstract

We have examined the modes of DNA synthesis in Escherichia coli strains made permeable to nucleoside triphosphates by treatment with toluene. In this quasi in vitro system, polymerase-I-deficient mutants exhibit a nonconservative mode of synthesis with properties expected for the resynthesis step of excision-repair. This UV-stimulated DNA synthesis can be performed by either DNA polymerase II or III and it also requires the uvrA gene product. It requires the four deoxynucleoside triphosphates; but, in contrast to the semiconservative mode, the ATP requirement can be partially satisfied by other nucleoside triphosphates. The ATP-dependent recBC nuclease is not involved. The observed UV-stimulated mode of DNA synthesis may be part of an alternate excision-repair mechanism which supplements or complements DNA-polymerase-I-dependent repair in vivo.

Keywords

Repair Patch Nucleoside Triphosphate polA Mutant Repair Synthesis Unirradiated Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burger, R. M. (1971). Proc Nat. Acad. Sci. U.S.A. 68, 2124–2126.CrossRefGoogle Scholar
  2. Campbell, J. L., Soll, L. and Richardson, C. C. (1972). Proc. Nat. Acad. Sci. U.S.A. 69, 2090–2094.CrossRefGoogle Scholar
  3. Cooper, P. K. and Hanawalt, P. C. (1972a). J. Mol. Biol. 67, 1–10.PubMedCrossRefGoogle Scholar
  4. Cooper, P. K. and Hanawalt, P. C. (1972b). Proc. Nat. Acad. Sci. U.S.A. 69, 1156–1160.CrossRefGoogle Scholar
  5. Couch, J. and Hanawalt, P. (1967). Biochem. Biophys. Res. Commun. 29, 779–784.PubMedCrossRefGoogle Scholar
  6. Gefter, M., Hirota, Y., Kornberg, T., Barnoux, C. and Wechsler, J. (1971). Proc. Nat. Acad. Sci. U.S.A. 68, 3150–3153.CrossRefGoogle Scholar
  7. Goldmark, P. J. and Linn, S. (1972). J. Biol. Chem. 247, 1849–1860.PubMedGoogle Scholar
  8. Gross, J. D., Grunstein, J. and Witkin, E. M. (1971). J. Mol. Biol. 58, 631–634.PubMedCrossRefGoogle Scholar
  9. Hanawalt, P. C. and Cooper, P. K. (1971). Methods Enzymol. 21, 221–230.CrossRefGoogle Scholar
  10. Hirota, Y., Gefter, M. and Mindich, L. (1972). Proc. Nat. Acad. Sci. U.S.A. 69, 3238–3242.CrossRefGoogle Scholar
  11. Kanner, L. and Hanawalt, P. (1970). Biochem. Biophys. Res. Commun. 39, 149–155.PubMedCrossRefGoogle Scholar
  12. Kelly, R. B., Atkinson, M., Huberman, J. and Kornberg, A. (1969). Nature 244, 495–501.CrossRefGoogle Scholar
  13. Lehman, I. R. and Chien, J. R. (1973). J. Biol. Chem. 248, 7717–7723.PubMedGoogle Scholar
  14. Masker, W. E. and Hanawalt, P. C. (1973). Proc. Nat. Acad. Sci. U.S.A. 70, 129–133.CrossRefGoogle Scholar
  15. Masker, W. E. and Hanawalt, P. C. (1974a). Biochim. Biophys. Acta 340, 229–236.PubMedGoogle Scholar
  16. Masker, W. E. and Hanawalt, P. C. (1974b). J. Mol. Biol. 88, 13–23.PubMedCrossRefGoogle Scholar
  17. Masker, W. E., Hanawalt, P. C. and Shizuya, H. (1973). Nature New Biol. 244, 242–243.PubMedGoogle Scholar
  18. Matsushita T., White, K. P. and Sueoka, N. (1971). Nature New Biol. 232, 111–114.PubMedGoogle Scholar
  19. Monk, M. and Kinross, J. (1972). J. Bacteriol. 109, 971–978.PubMedGoogle Scholar
  20. Monk, M., Peacey, M. and Gross, J. D. (1971). J. Mol. Biol. 58, 623–630.PubMedCrossRefGoogle Scholar
  21. Mordoh, J., Hirota, Y. and Jacob, F. (1970). Proc. Nat. Acad. Sci. U.S.A. 67, 773–778.CrossRefGoogle Scholar
  22. Moses, R. E. and Richardson, C. C. (1970). Proc. Nat. Acad. Sci. U.S.A. 67, 674–681.CrossRefGoogle Scholar
  23. Pisetsky, D., Berkower, I., Wickner, R. and Hurwitz, J. (1972). J. Mol. Biol. 71, 557–571.PubMedCrossRefGoogle Scholar
  24. Rama Reddy, G. V., Goulian, M. and Hendler, S. S. (1971). Nature New Biol. 234, 286–288.Google Scholar
  25. Simon, T. J., Masker, W. E. and Hanawalt, P. C. (1974). Biochim. Biophys. Acta 349, 271–274.PubMedGoogle Scholar
  26. Smith, K. C. (1971). In Photophysiology (Giese, A. C., ed.), vol. 6, pp. 210–278. Academic Press, New York.Google Scholar
  27. Tait, R. C., Harris, A. L. and Smith, D. W. (1974). Proc. Nat. Acad. Sci. U.S.A. 71, 675–679.CrossRefGoogle Scholar
  28. Wright, M., Buttin, G. and Hurwitz, J. (1971). J. Biol. Chem. 246, 6543–6555.PubMedGoogle Scholar
  29. Youngs, D. A. and Smith, K. C. (1973). Nature New Biol. 244, 240–241.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Warren E. Masker
    • 1
  • Thomas J. Simon
    • 1
  • Philip C. Hanawalt
    • 1
  1. 1.Department of Biological SciencesStanford University StanfordUSA

Personalised recommendations