Enzymatic Repair of UV-Irradiated DNA in Vitro

  • Lester D. Hamilton
  • Inga Mahler
  • Lawrence Grossman
Part of the Basic Life Sciences book series


Excision repair of UV-damaged Bacillus subtilis transforming DNA has been carried out by a sequential enzyme system in vitro. Incision adjacent to the pyrimidine dimer in the DNA strand by correndonuclease II-initiated excision of the damage by the 5′→3′-directed exonuclease of the Micrococcus luteus DNA polymerase. Reinsertion of nucleotides into the gap in the strand by the DNA polymerase at 10°C terminated in a single-strand break which was sealed by a polynucleotide ligase, thereby repairing the DNA strand. This restored biological activity to damaged DNA up to doses resulting in 60% inactivation of transforming activity. At higher doses, less repair was achieved, due to the development of double-strand breaks during the in vitro incision and excision steps.


Micrococcus Luteus Pyrimidine Dimer Sucrose Gradient Centrifugation Deoxyribonucleoside Triphosphate Repair Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brunk, C. F. (1973). Nature New Biot 241, 74.Google Scholar
  2. Burgi, E. and Hershey, A. D. (1963). Biophys. J. 3, 309.PubMedCrossRefGoogle Scholar
  3. Burrel, A. D., Feldschreiber, P. and Dean, C. J. (1971). Biochim. Biophys. Acta 247, 38.Google Scholar
  4. Chase, J. W. and Richardson, Cl C. (1974). J. Biol. Chem. 249, 4553.PubMedGoogle Scholar
  5. Freifelder, D. and Trumbo, B. (1969). Biopolymers 7, 681.CrossRefGoogle Scholar
  6. Gaudin, D. and Yielding, K. L. (1972). Biochem. Biophys. Res. Commun. 47, 1396.PubMedCrossRefGoogle Scholar
  7. Grossman, L. (1973). Advan. Radiat. Biol. 4, 77.Google Scholar
  8. Hamilton, L., Mahler, I. and Grossman, L. (1974). Biochemistry 13, 1886.PubMedCrossRefGoogle Scholar
  9. Kaiser, D., Tabor, H. and Tabor, C. W. (1963). J. Mol. Biol. 6, 141.CrossRefGoogle Scholar
  10. Kaplan, J. C. and Grossman, L. (1971). Methods Enzymol. 21, 249.CrossRefGoogle Scholar
  11. Kelly, R. B., Atkinson, M. R., Huberman, J. A. and Kornberg, A. (1969). Nature 224, 495.CrossRefGoogle Scholar
  12. Mahler, H. R. and Mehrotra, B. D. (1963). Biochim. Biophys. Acta 68, 211.CrossRefGoogle Scholar
  13. McGrath, R. A. and Williams, R. W. (1966). Nature 212, 534.PubMedCrossRefGoogle Scholar
  14. Modrich, P. and Lehman, I. R. (1970). J. Biol. Chem. 245, 3626.PubMedGoogle Scholar
  15. Setlow, R. B. (1970). Prog. Nucl. Acid Res. Mol. Biol. 8, 257.CrossRefGoogle Scholar
  16. Shafranovskaya, N. N., Trifonov, E. N., Lazurkin, Yu. S. and M. D. Frank-Kamenetskii (1973). Nature New Biol. 241, 58.PubMedGoogle Scholar
  17. Steven, L. (1967). Biochem. J. 103, 811.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Lester D. Hamilton
    • 1
  • Inga Mahler
    • 1
  • Lawrence Grossman
    • 1
  1. 1.Graduate Department of BiochemistryBrandeis UniversityWalthamUSA

Personalised recommendations