The Role of DNA Polymerase I in Excision-Repair

  • Barry W. Glickman
Part of the Basic Life Sciences book series


The ability of three different DNA polymerase I mutants of Escherichia coli to carry out excision-repair was examined. Strains having the same genetic origin but carrying either the polA1,po1A107, rsA1, or pot + alleles were compared. The rate of ultraviolet-induced dimer excision was slightly reduced, relative to that found in Pol+ strains, in the PolAl strain; greatly reduced in the Po1A107 strain; and found not to occur in the ResAl strain. Ultraviolet-light-induced repair synthesis as determined by the ultraviolet-stimulated incorporation of 3H-labeled 5-bromo-2′ -deoxyuridine into DNA of the parental density showed that the polAl mutation resulted in an increase in repair replication, while the presence of the polA107 allele caused a reduction in the amount of repair synthesis relative to that of the Pol+ strain. The ResAl strain, however, showed no ultraviolet stimulation of the incorporation of the density label. These observations indicate that DNA polymerase I plays a key role in the excision-repair process in E. coli.


Polymerize Activity Parental Density Pyrimidine Dimer polAl Mutation Repair Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boyle, J. M., Paterson, M. C. and Setlow, R. B. (1970). Nature 226, 708–710.PubMedCrossRefGoogle Scholar
  2. Boyce, R. P. and Howard-Flanders, P. (1964). Proc. Nat. Acad. Sci. U.S.A. 51, 293–300.CrossRefGoogle Scholar
  3. Carrier, W. L. and Setlow, R. B. (1971). Methods Enzymol. 210, 230–237.CrossRefGoogle Scholar
  4. Cooper, P. K. and Hanawalt, P. C. (1972). Proc. Nat. Acad. Sci. U.S.A. 69, 1156–1160.CrossRefGoogle Scholar
  5. Lucia, P. and Cairns, J. (1969). Nature 224, 1164–1166.PubMedCrossRefGoogle Scholar
  6. Gefter, M. L., Hirota, Y., Kornberg, T., Weschler, J. A. and Barnoux, C. (1971). Proc. Nat. Acad. Sci. U.S.A. 68, 3150–3153.CrossRefGoogle Scholar
  7. Glickman, B. W. (1974). Biochim. Biophys. Acta 335, 115–122.Google Scholar
  8. Glickman, B. W., van Sluis, C. A., Heijneker, H. L. and Rörsch, A. (1973). Mol. Gen. Genet. 124, 69–82.PubMedCrossRefGoogle Scholar
  9. Hanawalt, P. C. and Cooper, P. K. (1971). Methods Enzymol. 21D, 221–230.CrossRefGoogle Scholar
  10. Heijneker, H. L., Tjeerde, R. H., Glickman, B. W., van Dorp, B., Ellens, D. J. and Pouwels, P. H. (1973). Mol. Gen. Genet. 124, 83–96.PubMedCrossRefGoogle Scholar
  11. Kato, T. (1972). J. Bacteriol. 112, 1234–1246.Google Scholar
  12. Kato, T. and Kondo, S. (1967). Mutat. Res. 4, 253–263.PubMedCrossRefGoogle Scholar
  13. Lehman, I. R. and Chien, J. (1973). J. Biol. Chem. 248, 7717–7723.Google Scholar
  14. Masume, Y. and Richardson, C. C. (1971). J. Biol. Chem. 246, 2692–2701.Google Scholar
  15. Setlow, R. B. (1966). Radiat. Res. 6 (Suppl.), 220–228.CrossRefGoogle Scholar
  16. Tait, R. C., Harris, A. L. and Smith, D. W. (1974). Proc. Nat. Acad. Sci. U.S.A. 71, 675–679.CrossRefGoogle Scholar
  17. Youngs, D. A. and Smith, K. C. (1973). Nature New Biol. 244, 240–241.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Barry W. Glickman
    • 1
  1. 1.Laboratory for Molecular GeneticsLeiden State UniversityLeidenThe Netherlands

Personalised recommendations