Recovery of Phage λ from Ultraviolet Damage

  • Raymond Devoret
  • Manuel Blanco
  • Jacqueline George
  • Miroslav Radman
Part of the Basic Life Sciences book series


Recovery of phage λ from ultraviolet damage can occur, in the dark, through three types of repair processes as defined by microbiological tests: (1) host-cell reactivation, (2) prophage reactivation, and (3) UV reactivation. This paper reviews the properties of the three repair processes, analyzes their dependence on the functioning of bacterial and phage genes, and discusses their relationship.

Progress in the understanding of the molecular mechanisms underlying the three repair processes has been relatively slow, particularly for UV reactivation. It has been shown that host-cell reactivation is due to pyrimidine dimer excision and that prophage reactivation is due to genetic recombination (prereplicative).

We provide evidence showing that neither of these mechanisms accounts for UV reactivation of phage λ. Furthermore, UV reactivation differs from the other repair processes in that it is inducible and error-prone. Whether UV-damaged bacterial DNA is subject to a similar repair process is still an open question.


Repair Process Pyrimidine Dime Phage Gene Repair Efficiency Phage Survival 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, R., Doniger, J. and Tessman, I. (1971). Nature New Biol. 236, 23–25.Google Scholar
  2. Blanco, M. and Devoret, R. (1973). Mutat. Res. 17, 293–305.PubMedCrossRefGoogle Scholar
  3. Blanco, M., Levine, A. and Devoret, R. (1975). This volume, part B.Google Scholar
  4. Bootsma, D., de Weerd-Kastelein, E. A., Veldhuisen, G. and Keijzer, W. (1971). DNA Repair Mechanisms. F. K. Schattauer Verlag, Stuttgart.Google Scholar
  5. Borek, E. and Ryan, A. (1958). Proc. Nat. Acad. Sci. U.S.A. 44, 374–377.CrossRefGoogle Scholar
  6. Boyle, J. M. and Setlow, R. B. (1970). J. Mol. Biol. 51, 131–144.PubMedCrossRefGoogle Scholar
  7. Brooks, K. and Clark, A. J. (1967). J. Virol. 1, 283–293.PubMedGoogle Scholar
  8. Burton, A. J. and Yagi, S. (1968). J. Mol. Biol. 34, 481–486.PubMedCrossRefGoogle Scholar
  9. Castellazzi, M., George, J. and Buttin, G. (1972a). Mol. Gen. Genet. 119, 139–152.PubMedCrossRefGoogle Scholar
  10. Castellazzi, M., George, J. and Buttin, G. (1972b). Mol. Gen. Genet. 119, 153–174.PubMedCrossRefGoogle Scholar
  11. Chase, M. C. (1964). Ph. D. Thesis, University of Southern California, Los Angeles, California.Google Scholar
  12. Defais, M., Fauquet, P., Radman, M. and Errera, M. (1971). Virology 43, 495–503.PubMedCrossRefGoogle Scholar
  13. Devoret, R. and Blanco, M. (1970). Mol. Gen. Genet. 107, 272–280.CrossRefGoogle Scholar
  14. Devoret, R. and Coquerelle, T. (1966). Genetical Aspects of Radiosensitivity: Mechanisms of Repair, pp. 89–95. International Atomic Energy Agency, Vienna.Google Scholar
  15. Devoret, R. and George, J. (1967). Mutat. Res. 7, 713–734.Google Scholar
  16. Doermann, A. H. (1961). J. Cell. Comp. Physio1. 58 (suppl. 1), 79–93.CrossRefGoogle Scholar
  17. Donch, J., Greenberg, J. and Green, M. H. L. (1970). Genet. Res. 15, 87–97.PubMedCrossRefGoogle Scholar
  18. Echols, H. and Gingery, R. (1968). J. Mol. Biol. 34, 239–249.CrossRefGoogle Scholar
  19. Elsevier, S. and Dove, W. F. (1969). In Phage Meetings Cold Spring Harbor (abstract).Google Scholar
  20. Ganesan, A. K. (1974). J. Mol. Biol. 87, 103–119.PubMedCrossRefGoogle Scholar
  21. Garen, A. and Zinder, N. D. (1955). Virology 1, 347–376.PubMedCrossRefGoogle Scholar
  22. George, J. (1966). C. R. Acad. Sci. Paris 262, 1805–1808.Google Scholar
  23. George, J. and Devoret, R. (1971). Mol. Gen. Genet. 111, 103–119.PubMedCrossRefGoogle Scholar
  24. George, J., Devoret, R. and Radman, M. (1974). Proc. Nat. Acad. Sci. U.S.A. 71, 144–147.CrossRefGoogle Scholar
  25. Glickman, B. W. (1974). Biochim. Biophys. Acta 335, 115–122.Google Scholar
  26. Gottesman, M. E. and Yarmolinsky, M. B. (1968). Cold Spring Harbor Symp. Quant. Biol. 33, 735–747.PubMedCrossRefGoogle Scholar
  27. Harm, W. (1963a). Z. Vererbungsl. 94, 67–79.PubMedCrossRefGoogle Scholar
  28. Harm, W. (1963b). Virology 19, 66–71.PubMedCrossRefGoogle Scholar
  29. Harm, W. (1966). Virology 29, 494.PubMedCrossRefGoogle Scholar
  30. Hart, M. G. R. and Ellison, J. (1970). J. Gen. Virol. 8, 197–208.Google Scholar
  31. Hertman, I. and Luria, S. E. (1967). J. Mol. Biol. 23, 117–133.PubMedCrossRefGoogle Scholar
  32. Howard-Flanders, P. and Boyce, R. P. (1966). Radiat. Res. 6 (suppl.) 156–184.CrossRefGoogle Scholar
  33. Howard-Flanders, P. and Lin, P. F. (1973). Genetics (suppl.) 73, 85–90.Google Scholar
  34. Howard-Flanders, P., Boyce, R. P. and Theriot, L. (1966). Genetics 53, 1119–1136.PubMedGoogle Scholar
  35. Howard-Flanders P., Rupp, W. D., Wilkins, B. M. and Cole, R. S. (1968). Cold Spring Harbor Symp. Quant. Biol. 33, 195–205.PubMedCrossRefGoogle Scholar
  36. Jacob, F. and Wollman, E. L. (1953). Cold Spring Harbor Symp. Quant. Biol. 18, 101–121.PubMedCrossRefGoogle Scholar
  37. Jacob, F. and Wollman, E. L. (1955). Ann. Inst. Pasteur 88, 724–749.Google Scholar
  38. Jagger, J. (1960). In Radiation Protection and Recovery (Hollaender, A., ed.), pp. 352–377. Pengamon, New York.Google Scholar
  39. Kellenberger, G. and Weigle, J. J. (1958). Biochim. Biophys. Acta 30, 112–124.PubMedCrossRefGoogle Scholar
  40. Luria, S. E. (1947). Proc. Nat. Acad. Sci. U.S.A. 33, 253–264.CrossRefGoogle Scholar
  41. Miura, A. and Tomizawa, J. (1968). Mol. Gen. Genet. 103, 1–10.PubMedCrossRefGoogle Scholar
  42. Miura, A. and Tomizawa, J. (1970). Proc. Nat. Acad. Sci. U.S.A. 67, 1722–1726.CrossRefGoogle Scholar
  43. Monk, M. (1969). Mol. Gen. Genet. 106, 14–24.PubMedCrossRefGoogle Scholar
  44. Ogawa, H. and Tomizawa, J. (1973). J. Mol. Biol. 73, 397–406.PubMedCrossRefGoogle Scholar
  45. Ogawa, H., Shimada, K. and Tomizawa, J. (1968). Mol. Gen. Genet. 101, 227–244.PubMedCrossRefGoogle Scholar
  46. Ono, J. and Shimazu, Y. (1966). Virology 29, 295.PubMedCrossRefGoogle Scholar
  47. Radding, C. M. (1973). Ann. Rev. Genet. 7, 87–109.PubMedCrossRefGoogle Scholar
  48. Radman, M. (1974). In Molecular and Environmental Aspect of Mutagenesis (Drakash, L., Sherman, F., Miller, M., Lawrence, C. W., Taber, H. W., eds.), pp. 128–142. C. C. Thomas, Springfield, Illinois.Google Scholar
  49. Radman, M. and Devoret R. (1971). Virology 43, 504–506.PubMedCrossRefGoogle Scholar
  50. Radman, M., Cordone, L., Krsmanovic-Simic, D. and Errera, M. (1970). J. Mol. Biol. 49, 203–212.PubMedCrossRefGoogle Scholar
  51. Rosner, J. L., Kass L. R. and Yarmolinsky, M. B. (1968). Cold Spring Harbor Symp. Quant. Biol. 33, 785–789.PubMedCrossRefGoogle Scholar
  52. Rupp, D. W., Wilde, C. E., Reno, D. L. and Howard-Flanders, P. (1971). J. Mol. Biol. 61, 25–44.PubMedCrossRefGoogle Scholar
  53. Setlow, R. B. and Carrier, W. L. (1966). Biophys. Soc. Abstr. 6, 68.Google Scholar
  54. Shinagawa, H. and Itoh, T. (1974). Mol. Gen. Genet. 126, 103–110.CrossRefGoogle Scholar
  55. Signer, E. R. and Weil, J. (1968). J. Mol. Biol. 34, 261–271.PubMedCrossRefGoogle Scholar
  56. Stahl, F. W., McMilin, K. D., Stahl M. M. and Nozu, Y. (1972). Proc Nat. Acad. Sci. U.S.A. 69, 3598–3601.Google Scholar
  57. Tessman, E. S. and Ozaki, T. (1960). Virology 12, 431–439.PubMedCrossRefGoogle Scholar
  58. van de Putte, P., van Dillewijn, J., van Sluis, C. A. & Rörsch, A. (1965). Mutat. Res. 2, 97–110.CrossRefGoogle Scholar
  59. Weigle, J. J. (1953). Proc. Nat. Acad. Sci. U.S.A. 39, 628–636.CrossRefGoogle Scholar
  60. Weigle, J. J. (1966). In Phage and the Origins of Molecular Biology (Cairns, J., Stent, G. S. and Watson, J. D., eds.), pp. 226–235. Cold Spring Harbor Laboratory of Quantitative Biology, New York.Google Scholar
  61. Witkin, E. M. (1967). Brookhaven Symp. Biol. 20, 17–55.Google Scholar
  62. Witkin, E. M. (1969a). Mutat. Res. 8, 9–14.PubMedCrossRefGoogle Scholar
  63. Witkin, E. M. (1969b). Ann. Rev. Microbiol. 23, 487–513.CrossRefGoogle Scholar
  64. Witkin, E. M. (1974). Proc. Nat. Acad. Sci. U.S.A. 71, 1930–1934.CrossRefGoogle Scholar
  65. Yamamoto, N. (1967). Biochem. Biophys. Res. Commun. 27, 263–269.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Raymond Devoret
    • 1
  • Manuel Blanco
    • 1
  • Jacqueline George
    • 1
  • Miroslav Radman
    • 1
  1. 1.Laboratoire d’EnzymologieC.N.R.S.Gif sur YvetteFrance

Personalised recommendations