Advertisement

The Human Leukocyte Photoreactivating Enzyme

  • Betsy M. Sutherland
Part of the Basic Life Sciences book series

Abstract

A photoreactivating enzyme from human leukocytes has been isolated and characterized. The enzyme requires DNA irradiated with ultraviolet light (220–300 nm) as substrate, and visible light (300–600 nm) for catalysis. In the reaction, the enzyme converts cyclobutyl pyrimidine dimers in the DNA to monomer pyrimidines.

The enzyme has an apparent monomer molecular weight of 40,000 and tends to form aggregates. The pH optimum of 7.2 and absence of a requirement for metal ions are similar to the requirements of the Escherichia coli enzyme; however, the ionic strength optimum of 0.05 is much lower than those for other photoreactivating enzymes.

The demonstration that human cells possess photoreactivating enzyme implies that a direct test by photoreactivation may be made of the role of pyrimidine dimers in the induction of abnormal cell growth.

Keywords

Human Leukocyte Placental Mammal Pyrimidine Dimer Rabbit Kidney Cell Dime Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carrier, W. L. and Setlow, R. B. (1971). Methods Enzymol. 210, 230–237.CrossRefGoogle Scholar
  2. Cleaver, J. E. (1966). Biochem. Biophys. Res. Commun. 24, 569–576.PubMedCrossRefGoogle Scholar
  3. Cook, J. S. (1971). In Photophysiology (Giese, A. C., ed.), vol. III, pp. 191–233. Academic Press, New York.Google Scholar
  4. Cook, J. S. and McGrath, J. R. (1967). Proc. Nat. Acad. Sci. U.S.A. 58, 1359–1365.Google Scholar
  5. Epstein, J. H. (1971). In Photophysiology (Giese, A. C., ed.), vol. V, pp. 235–273. Academic Press, New York.Google Scholar
  6. Harm, W., Rupert, C. S. and Harm, H. (1972). In Molecular and Cellular Repair Processes (Beers, R. F., Herriott, R. M. and Tilghman, R. C., eds.), pp. 53–63. Johns Hopkins Press, Baltimore.Google Scholar
  7. Hart, R. and Setlow, R. B. (1973). In Abstr. 1st Ann. Mtg. Amer. Soc. Photobiol. (Sarasota), p. 120.Google Scholar
  8. Klimek, M. (1966). Photochem. PhotobioL 5, 603–607.PubMedCrossRefGoogle Scholar
  9. Logan, R., Errera, M. and Ficq, A. (1959). Biochim. Biophys. Acta 32, 147–155.Google Scholar
  10. Pfefferkorn, E. R. and Coady, H. M. (1968). J. Virol. 2, 474–479.PubMedGoogle Scholar
  11. Rieck, A. F. and Carlson, S. (1955). J. Cell. Comp. Physiol 46, 301–305.CrossRefGoogle Scholar
  12. Rupert, C. S. (1960). J. Gen. Physiol. 43, 573–595.PubMedCrossRefGoogle Scholar
  13. Rupert, C. S., Goodgal, S. H. and Herriott, R. M. (1958). J. Gen. Physiol. 41, 451–471.PubMedCrossRefGoogle Scholar
  14. Setlow, J. K. and Setlow, R. B. (1963). Nature 197, 560–562.CrossRefGoogle Scholar
  15. Setlow, R. B., Carrier, W. L. and Bollum, F. J. (1965). Proc. Nat. Acad. ScL U.S.A. 53, 1111–1118.Google Scholar
  16. Sutherland, B. M. (1974). Nature. 238, 109–112.CrossRefGoogle Scholar
  17. Sutherland, B. M. and Chamberlin, M. J. (1973). Anal. Biochem. 53, 168–176.PubMedCrossRefGoogle Scholar
  18. Sutherland, B. M., Sutherland, J. C. and Chamberlin, M. J. (1973). J. Biol. Chem. 284, 4200–4205.Google Scholar
  19. Sutherland, B. M., Runge, P. and Sutherland, J. C. (1974). Biochem. 13, 4710–4715.CrossRefGoogle Scholar
  20. Trosko, J. E., Chu, E. H. and Carrier, W. L. (1965). Radiat. Res. 24, 667–672.PubMedCrossRefGoogle Scholar
  21. Trosko, J. E., Krause, D. and Isoun, M. (1970). Nature, 228, 358–359.PubMedCrossRefGoogle Scholar
  22. Wulff, D. L. and Rupert, C. S. (1962). Biochem. Biophys. Res. Commun. 7, 237–240.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Betsy M. Sutherland
    • 1
  1. 1.Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineUSA

Personalised recommendations