Enzymatic Photoreactivation: Overview

  • Claud S. Rupert
Part of the Basic Life Sciences book series


Photoreactivation—a reduction in the effect of ultraviolet irradiation by subsequent exposure to longer wavelengths—stems from at least two different kinds of processes. The first is direct, photoenzyme-mediated repair of ultraviolet radiation damage to DNA, while the second (“indirect photoreactivation”) is an enhancement of light-independent repairs due to physiological changes induced in cells by light.1 These two kinds of processes can be distinguished by their different wavelength and temperature dependences (Jagger and Stafford, 1965). Since indirect photoreactivation is merely one aspect of recovery through mechanisms able to act in the dark, it is best discussed in that context. We are concerned in this section only with the direct photoenzymatic process.


Action Spectrum Micrococcus Luteus Pyrimidine Dimer Streptomyces Griseus Euglena Gracilis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ben-Hur, E. and Ben-Ishai, R. (1968). Biochim. Biophys. Acta 166, 9–15.PubMedGoogle Scholar
  2. Blackburn, G. M. and Davies, R. J. H. (1966). Biochem. Biophys. Res. Commun. 22, 704–706.PubMedCrossRefGoogle Scholar
  3. Blum, H. F., Robinson, J. C. and Loos, G. M. (1951). J. Gen. Physiol. 35, 323–342. Cohn, W. E., Leonard, N. J. and Wang, S. Y. (1974). Photochem. Photobiol. 19, 89–94.Google Scholar
  4. Cook, J. S. (1967). Photochem. Photobiol. 6, 97–101.PubMedCrossRefGoogle Scholar
  5. Cook, J. S. (1970). Photophysiology 5, 191–233.PubMedGoogle Scholar
  6. Cook, J. S. (1972). In Molecular and Cellular Repair Processes (Beers, R. F., Herriott, R. M. and Tilghman, R. C., eds.), pp. 79–94. Johns Hopkins Press, Baltimore.Google Scholar
  7. Cook, J. S. and McGrath, J. R. (1967). Proc. Nat. Acad. Sci. U.S.A. 58, 1359–1365. Cook, J. S. and Regan, J. D. (1969). Nature 223, 1065–1066.Google Scholar
  8. Cook, J. S. and Setlow, J. K. (1966). Biochem. Biophys. Res. Commun. 24, 285–289. Diamond, J., Schiff, J. A. and Keiner, A. (1969). Plant Physiol. 44 (Suppl.), 9.Google Scholar
  9. Diamond, J., Schiff, J. A. and Keiner, A. (1975). Archives Biochem. Biophys. 167, 603–614.CrossRefGoogle Scholar
  10. Dulbecco, R. (1949). Nature 163, 949–950.PubMedCrossRefGoogle Scholar
  11. Dulbecco, R. (1955). In Radiation Biology (Hollaender, A., ed.), Vol. II, pp. 455–486. McGraw-Hill, New York.Google Scholar
  12. Eker, A. P. M. (1972). In Book of Abstracts. VIInt. Congr. Photobiol.(Bochum) No. 118.Google Scholar
  13. Elder, R. L. and Beers R. F., Jr. (1965). J. Bacteriol. 90, 681–686.PubMedGoogle Scholar
  14. Francis A. A. and Whitson, G. L. (1969). Biochim. Biophys. Acta 179, 253–257.PubMedGoogle Scholar
  15. Goodgal, S. H., Rupert, C. S. and Herriott, R. M. (1957). In The Chemical Basis of Heredity (McElroy, W. D. and Glass, B., eds.), pp. 341–343.Johns Hopkins Press, Baltimore.Google Scholar
  16. Harm, W. (1966). In The Physiology of Gene Mutation and Mutation Expression (Kohouto-vâ, M. and Hubgek, J., eds.), pp. 51–59. Academia, Prague.Google Scholar
  17. Harm, W. (1969). Radiat. Res. 40, 63–69.PubMedCrossRefGoogle Scholar
  18. Harm, H. and Rupert, C. S. (1970a). Mutat. Res. 10, 291–306.PubMedCrossRefGoogle Scholar
  19. Harm, H. and Rupert, C. S. (1970b).Mutat. Res. 10, 306–318.Google Scholar
  20. Harm, W., Rupert, C. S. and Harm, H. (1972). In Molecular and Cellular Repair Processes (Beers, R. F., Herriott, R. M. and Tilghman, R. C., eds.), pp. 53–63. Johns Hopkins Press, Baltimore.Google Scholar
  21. Hollaender, A. and Claus, W. D. (1937). Bull. Nat. Res. Council 100, 75–88.Google Scholar
  22. Ikenaga, M., Kondo, S. and Fujii, T. (1974). Photochem. Photobiol. 19, 109–113.CrossRefGoogle Scholar
  23. Jagger, J. (1958). Bacteriol. Rev. 22, 99–142.PubMedGoogle Scholar
  24. Jagger, J. and Latarjet, R. (1956). Ann Inst. Pasteur 91, 858–873.Google Scholar
  25. Jagger, J. and Stafford, R. S. (1965). Biophys. J. 5, 75–88.PubMedCrossRefGoogle Scholar
  26. Jagger, J., Stafford, R. S. and Snow, J. M. (1969). Photochem. Photobiol. 10, 383–395.PubMedCrossRefGoogle Scholar
  27. Jagger, J., Takebe, H. and Snow, J. M. (1970). Photochem. Photobiol. 12, 185–196.PubMedCrossRefGoogle Scholar
  28. Johns, H. E., Rapaport, S. A. and Delbrück, M. (1962). J. Mol. Biol. 4, 104–114.PubMedCrossRefGoogle Scholar
  29. Kaplan, R. W., Winkler, U. and Wolf-Ellmauer, H. (1960). Nature 186, 330–331.PubMedCrossRefGoogle Scholar
  30. Keiner, A. (1949). Proc. Nat. Acad. Sci. U.S.A. 35, 73–79.CrossRefGoogle Scholar
  31. Keiner, A. (1964). Radiat. Res. 25, 205.Google Scholar
  32. Lamola, A. A. (1972). J. Amer. Chem. Soc. 94, 1013–1014.CrossRefGoogle Scholar
  33. Madden, J. J. and Warbin, H. (1974). Biochemistry 13, 2149–2154.PubMedCrossRefGoogle Scholar
  34. Patrick, M. H. (1970). Photochem. Photobiol. 11, 477–485.PubMedCrossRefGoogle Scholar
  35. Pfefferkorn, E. R. and Coady, H. M. (1968). J. Vitol. 2, 474–479.Google Scholar
  36. Rahn, R. O., Setlow, J. K. and Hosszu, J. L. (1969). Biophys. J. 9, 510–517.PubMedCrossRefGoogle Scholar
  37. Regan, J. D. and Cook, J. S. (1967). Proc. Nat. Acad. Sci. U.S.A. 58, 2274–2279.CrossRefGoogle Scholar
  38. Regan, J. D., Cook, J. S. and Lee, W. H. (1968). J. Comp. Cell. Physiol. 71, 173–176.Google Scholar
  39. Regan, J. D., Cook, J. S. and Takeda, S. (1969). In Hemic Cells in Vitro (Farnee, P., ed.), p. 162. Williams and Wilkins, Baltimore.Google Scholar
  40. Rupert, C. S. (1960a). In Comparative Effects of Radiation (Burton, M. and Kirby-Smith, J. S., eds.), pp. 49–61. Wiley, New York.Google Scholar
  41. Rupert, C. S. (1960b). J. Gen. Physiol. 43, 573–595.PubMedCrossRefGoogle Scholar
  42. Rupert, C. S. (1962a). J. Gen. Physiol. 45, 703–724.PubMedCrossRefGoogle Scholar
  43. Rupert, C. S. (1962b). J. Gen. Physiol. 45, 724–741.Google Scholar
  44. Rupert, C. S. (1964). Photo physiology 2, 283–327.Google Scholar
  45. Rupert, C. S. and Harm, W. (1966). Adv. Radiat. Biol. 2, 1–81.Google Scholar
  46. Rupert, C. S., Goodgal, S. H. and Herriott, R. M. (1958). J. Gen. Physiol. 41, 451–471.Google Scholar
  47. Rupert, C. S., Harm, W. and Harm, H. (1972). In Molecular and Cellular Repair Processes (Beers, R. F., Herriott, R. M. and Tilghman, R. C., eds.), pp. 64–78. Johns Hopkins Press, Baltimore.Google Scholar
  48. Rupert, C. S., Harm, H. and To, K. (1975). In Proc. Symp. New Trends in Photobiology, Rio de Janeiro (in press).Google Scholar
  49. Saito, N. and Werbin, H. (1969). Photochem. Photobiol. 9, 389–393.PubMedCrossRefGoogle Scholar
  50. Saito, N. and Werbin, H. (1970). Biochemistry 9, 2610–2620.PubMedCrossRefGoogle Scholar
  51. Schiff, J. A., Lyman, H. and Epstein, H. T. (1961). Biochim. Biophys. Acta 50, 310–318.Google Scholar
  52. Setlow, J. K. (1966). Curr. Top. Radiat. Res. 2, 195–248.Google Scholar
  53. Setlow, J. K. (1967). Comp. Biochem. 27, 157–209.Google Scholar
  54. Setlow, J. K. (1972). In Research Progress in Organic, Biological, and Medicinal Chemistry (Gallo, V. and Santamaria, L., eds.), vol. 3, part I, pp. 335–355. North Holland, Amsterdam-London.Google Scholar
  55. Setlow, J. K. and Boling, M. E. (1963). Photochem. Photobiol. 2, 471–477.CrossRefGoogle Scholar
  56. Setlow, J. K. and Bollum, F. J. (1968). Biochim. Biophys. Acta 157, 233–237. Setlow, R. B. (1961). Biochim. Biophys. Acta 49, 237–238.Google Scholar
  57. Setlow, R. B. (1966). Science 153, 379–386.PubMedCrossRefGoogle Scholar
  58. Setlow, R. B. and Carrier, W. L. (1966). J. Mol. Biol. 17, 237–254.PubMedCrossRefGoogle Scholar
  59. Sutherland, B. M., Carrier, W. L. and Setlow, R. B. (1967). Science 158, 1699–1700.PubMedCrossRefGoogle Scholar
  60. Sutherland, J. C. and Sutherland, B. M. (1972). In Book of Abstracts VI Int. Congr. Photobiol. (Bochum), No. 115.Google Scholar
  61. Terry, C. E. and Setlow, J. K. (1967). Photochem. Photobiol. 6, 799–803.PubMedCrossRefGoogle Scholar
  62. Terry, C. E., Kilbey, B. J. and Howe, H. B., Jr. (1967). Radiat. Res. 30, 739–747.Google Scholar
  63. Trosko, J. E. and Mansour, V. H. (1968). Radiat. Res. 36, 333–343.PubMedCrossRefGoogle Scholar
  64. Trosko, J. E. and Mansour, V. H. (1969). Mutat. Res. 7, 120–121.PubMedCrossRefGoogle Scholar
  65. Trosko, J. E., Chu, E. H. Y. and Carrier, W. L. (1965). Radiat. Res. 24, 667–672.PubMedCrossRefGoogle Scholar
  66. Van Baalen, C. (1968). Plant Physiol. 43, 1689–1695.PubMedCrossRefGoogle Scholar
  67. Varghese, A. J. (1972). Photophysiology 7, 207–274.PubMedGoogle Scholar
  68. Varghese, A. J. and Wang, S. Y. (1967). Nature 213, 909–910.PubMedCrossRefGoogle Scholar
  69. Werbin, H. and Rupert, C. S. (1968). Photochem. Photobiol. 7, 225–230.PubMedCrossRefGoogle Scholar
  70. Williams, D. L., Hayes, F. N., Varghese, A. J. and Rupert, C. S. (1971). Biophys. Soc. Abstr. 11, 191a.Google Scholar
  71. Witkin, E. M. (1969). Ann Rev. Microbiol. 23, 487–514.CrossRefGoogle Scholar
  72. Wulff, D. L. and Rupert, C. S. (1962). Biochem. Biophys. Res. Commun. 7, 237–240.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Claud S. Rupert
    • 1
  1. 1.Institute for Molecular BiologyThe University of Texas at DallasRichardsonUSA

Personalised recommendations