Repairable Damage in DNA: Overview

  • Peter A. Cerutti
Part of the Basic Life Sciences book series


Due to the central functional role of DNA and the fact that each cell contains only one or at the most a few copies of each chromosome, damage to DNA has more severe implications for the functional integrity of the cell than does damage to most other cellular components. The chemical makeup and the large target size of chromosomal DNA make it particularly susceptible to attack by exogenous chemical and physical agents. Most, if not all, reactions of exogenous agents with the sugar residues of the DNA backbone result in strand breakage. While the continuity of the sugar-phosphate backbone usually remains intact for reactions involving the heterocyclic bases, such reactions may cause local distortion of the DNA conformation and of the native structure of eukaryotic chromatin. The preservation of the unique three-dimensional structure of the double-stranded DNA helix appears to be a prerequisite for its unimpaired biological activity. DNA base damage and concomitant helix distortion may lead to inhibition of replication and transcription and to a deterioration of the fidelity and a breakdown of the regulation of these processes. Restoration of the structural integrity of the DNA by repair processes is, therefore, a vital function of every cell.


Bulky Substituent Sulfur Mustard Nitrogen Mustard Ring Saturation Apurinic Site 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, P. and Lett, J. (1968). Comp. Biochem. 27, 267–356.Google Scholar
  2. Bacchetti, S., Van der Plaas and Veldhuisen, G. (1972). Biochem. Biophys. Res. Commun. 48, 662–668.CrossRefGoogle Scholar
  3. Boyce, R. and Howard-Flanders, P. (1964). Z. Vererbungsl. 95, 345–350.PubMedCrossRefGoogle Scholar
  4. Brent, T. (1973). Biophys. J. 13, 399–401.PubMedCrossRefGoogle Scholar
  5. Cadet, J. and Téoule, R. (1971). Biochim. Biophys. Acta 238, 8–26.Google Scholar
  6. Cadet, J. and Téoule, R. (1972). Tetrahedron Lett. 31, 3225–3228.CrossRefGoogle Scholar
  7. Carrier, W. and Setlow, R. (1974). Fed. Proc. 33, 1599.Google Scholar
  8. Cerutti, P. (1974). Naturwissenschaften 61, 51–59.PubMedCrossRefGoogle Scholar
  9. Cerutti, P. and Vanderhoek, J. (1975). In Photochemistry and Photobiology of NucleicGoogle Scholar
  10. Acids (Wang, S. Y. Patrick, M., eds.). Gordon Breach, New York (in press).Google Scholar
  11. Cerutti, P., Miles, H. and Frazier, J. (1966). Biochem. Biophys. Res. Commun. 22, 466–472.Google Scholar
  12. Cleaver, J. (1974). Advan. Radiat. Biol. 4, 1–75.Google Scholar
  13. Donnellan, J. and Setlow, R. (1965). Science 149, 308–310.PubMedCrossRefGoogle Scholar
  14. Ducolomb, R., Cadet, J. and Téoule, R. (1974). Int. J. Radiat. Biol. 25, 139–149.Google Scholar
  15. Ekert, B. and Monier, R. (1959). Nature 184, BA58–BA59.Google Scholar
  16. Grossman, L. (1974). Advan. Radiat. Biol. 4, 77–126.Google Scholar
  17. Grunberger, D., Blobstein, S. and Weinstein, I. (1974). J. Mol. Biol. 83, 459–468.Google Scholar
  18. Hahn, B., Wang, S., Flippen, J. and Karle, 1. (1973). J. Amer. Chem. Soc. 95, 2711–2712.Google Scholar
  19. Hariharan, P. and Cerutti, P. (1972). J. Mol. Biol. 66, 65–81.PubMedCrossRefGoogle Scholar
  20. Hariharan, P. and Cerutti, P. (1974). Biochem. Biophys. Res. Commun. 61, 971–976.CrossRefGoogle Scholar
  21. Hariharan, P. and Cerutti, P. (1974). Biochem. Biophys. Res. Commun. 61, 375–379.CrossRefGoogle Scholar
  22. Hariharan, P. and Cerutti, P. (1974). Proc. Nat. Acad. Sci. U.S.A. 71, 3532–3536.CrossRefGoogle Scholar
  23. Latarjet, R., Ekert, B. and Demerseman, P. (1963). Radiat. Res. 3 (Suppl.), 247–256.Google Scholar
  24. Lawley, P. (1972). In Topics in Chemical Carcinogenesis (Nakahara, W., Takayama, S.Google Scholar
  25. Sugimura, T.and Odashima, S., eds.), p. 237. University Park Press, Baltimore; and University of Tokyo Press, Tokyo.Google Scholar
  26. Lawley, P. and Brookes, P. (1967). J. Mol. Biol. 25, 143–160.PubMedCrossRefGoogle Scholar
  27. Lawley, P. and Orr, D. (1970). Chem.-Biol. Interact. 2, 154–157.PubMedCrossRefGoogle Scholar
  28. Lawley, P., Lethbridge, J., Edwards, P. and Shooter, K. (1969). J. Mol. Biol. 39, 181–198.Google Scholar
  29. Lindahl, T. (1974). Proc. Natl. Acad. Sci. U.S.A. 71, 3649–3653.CrossRefGoogle Scholar
  30. Ludlum, D. (1970). J. Biol. Chem. 245, 477–482.PubMedGoogle Scholar
  31. Mattem, M., Hariharan, P., Dunlap, B. and Cerutti, P. (1973). Nature New Biol. 245, 230–232.Google Scholar
  32. Miller, E. and Miller, J. (1969). Ann. N.Y. Acad. Sci. 163, 731–750.CrossRefGoogle Scholar
  33. Patrick, M. H. and Rahn, R. O. (1975). In Photochemistry and Photobiology of Nucleic Acids (Wang, S. Y. and Patrick, M., eds.). Gordon Breach, New York (in press).Google Scholar
  34. Rae, P. M. (1973). Proc. Nat. Acad. Sci. U.S.A. 70, 1141–1145.CrossRefGoogle Scholar
  35. Regan, J. and Setlow, R. (1973). In Chemical Mutagens (Hollaender, A., ed.), vol. 3, pp. 151–170. Plenum Press, New York.CrossRefGoogle Scholar
  36. Remsen, J. and Cerutti, P. (1972). Biochem. Biophys. Res. Commun. 48, 430–436.Google Scholar
  37. Remsen, J., Miller, N. and Cerutti, P. (1970). Proc. Nat. Acad. Sci. U.S.A. 65,460–466. Roti Roti, J. and Cerutti, P. (1974). Int. J. Radiat. Biol. 35, 413–417.Google Scholar
  38. Roti Roti, J. and Stein, G. and Cerutti, P. (1974). Biochemistry 13, 1900–1904.Google Scholar
  39. Setlow, R. and Carrier, W. (1973) Nature New Biol. 241, 170–172.PubMedCrossRefGoogle Scholar
  40. Setlow, R. and Setlow, J. (1972). Ann. Rev. Biophys. Bioeng. 1, 293–346.CrossRefGoogle Scholar
  41. Shafranovskaya, N., Trifonov, E., Lazurkin, Y. and Frank-Kamenetskii, M. (1973). Nature New Biol. 241, 5860.Google Scholar
  42. Smets, L. and Cornelis, T. (1971). Int. J. Radiat. Biol. 19, 445–457.CrossRefGoogle Scholar
  43. Smith, K. (1975). In Photochemistry and Photobiology of Nucleic Acids (Wang, S. Y. and Patrick, M., eds.). Gordon Breach, New York (in press).Google Scholar
  44. Swinehart, J., Bobst, A. and Cerutti, P. (1972). FEBS Lett. 21, 56–58.PubMedCrossRefGoogle Scholar
  45. Swinehart, J., Lin, W. and Cerutti, P. (1974). Radiat. Res. 58, 166–175.PubMedCrossRefGoogle Scholar
  46. Téoule, R., Bonicel, A., Bert, C., Cadet, J. and Polverelli, M. (1974). Radiat. Res. 57, 46–58.PubMedCrossRefGoogle Scholar
  47. VanHemmen, J. (1971). Nature New Biol. 231, 79–80.CrossRefGoogle Scholar
  48. Varghese, A. (1970). Biochem. Biophys. Res. Commun. 38, 484–490.Google Scholar
  49. Varghese, A. and Patrick, M. (1969). Nature 223, 299–300.PubMedCrossRefGoogle Scholar
  50. Venitt, S. and Tarmy, E. (1972). Biochim. Biophys. Acta 287, 38–51.Google Scholar
  51. Verly, W. (1974). Biochem. Pharmacol. 23, 3–8.PubMedCrossRefGoogle Scholar
  52. Verly, W. and Paquette, Y. (1972). Can. J. Biochem. 50, 217–224.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Peter A. Cerutti
    • 1
  1. 1.Department of BiochemistryUniversity of FloridaGainesvilleUSA

Personalised recommendations