Unconventional Methods in Plant Breeding

  • Georg Melchers
Part of the Basic Life Sciences book series (BLSC, volume 8)


There are three ways whereby unconventional methods of plant genetics can be used for applied plant breeding.

  1. 1.

    The time necessary for breeding by recombination can be shortened, making use of the discovery that plants can be obtained directly from the products of meiosis, the “Gonen.” Two new cultivars bred in tobacco by this method already exist.

  2. 2.

    Microbiological methods may be applied to mutation and selection in haploid or dihaploid cell cultures. New cultivars bred by this method have not yet been published, but it should be possible to make use of this technique in plant breeding.

  3. 3.

    Somatic hybridization of plants by fusion of protoplasts or by uptake of nuclei and other organelles (plastids, mitochondria) or pure nucleic acids is another useful method. There exist up to now somatic hybrid plants (a) between mutants of the liverwort Sphaerocarpos donnellii, (b) some varieties of tobacco, and (c) two species of Nicotiana. All these hybrids can also be produced by conventional sexual hybridization. It is impossible to predict how often incompatibility for cross-fertilization can be surmounted by somatic hybridization, as incompatibility between two genomes must not be restricted to the fertilization process, but it can work on any stage of the development of the hybrid.



Pollen Tube Plant Breeding Callus Culture Somatic Hybridization Hybrid Cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Binding, H. (1976). Somatic hybridization experiments in solanaceous species. Mol. Gen. Genet. 144: 171–175.CrossRefGoogle Scholar
  2. Binding, H., Binding, K., and Straub, J. (1970). Selektion in Gewebekulturen mit haploiden Zellen. Naturwissenschaften 57: 136–139.CrossRefGoogle Scholar
  3. Carlson, P. S., Smith, H. H., and Dearing, R. (1972). Parasexual interspecific plant hybridization. Proc. Natl. Acad. Sci. USA 69: 2292–2294.PubMedCrossRefGoogle Scholar
  4. Cooperative Group of Haploid Breeding of Tobacco of Shangtung Institute of Tobacco and Peking Institute of Botany, Academia Sinica (1974). Success of breeding the new tobacco cultivar “Tan—Yuk Nr.1.” (Chinese with English summary.) Acta Bot. Sin. 16: 300–303.Google Scholar
  5. Gleba, Y. Y., Butenko, R. G., and Sytnik, K. M. (1975). Protoplast fusion and parasexual hybridization in Nicotiana tabacum. XII International Botanical Congress, Leningrad, p. 290 (Abst.). Google Scholar
  6. Guha, S. and Maheswari, S. C. (1964). In vitro production of embryos from anthers of Datura. Nature (London) 204:497.CrossRefGoogle Scholar
  7. Guha, S. and Maheswari, S. C. (1966). Cell division and differentiation of embryos in the pollen grains of Datura in vitro. Nature (London ) 212: 97–98.CrossRefGoogle Scholar
  8. Hollingshead, L. (1930a). A lethal factor in Crepis effective only in an interspecific hybrid. Genetics 15: 114–140.PubMedGoogle Scholar
  9. Hollingshead, L. (1930b). Cytological investigations of hybrids and hybrid derivatives of Crepis capillaris and Crepis tectorum. Univ. Calif PubL Agri. Sci. 6: 55–94.Google Scholar
  10. Kao, K. N. and Michayluk, M. R. (1974). A method for high frequency intergeneric fusion of plant protoplasts. Planta (Berlin) 115: 355–367.CrossRefGoogle Scholar
  11. Kao, K. N., Constabel, F., Michayluk, M. R. and Gamborg, O. L. (1974). Plant protoplast fusion and growth of intergeneric hybrid cells. Planta 120: 215–227.CrossRefGoogle Scholar
  12. Kasha, K. J., ed. (1974). Proceedings 1st International Symposium Haploids in Higher Plants–Advances and Potential, June, 1974, Univ. of Guelph, Canada.Google Scholar
  13. Keller, W. A. and Melchers, G. (1973). The effect of high pH and calcium on tobacco leaf protoplast fusion. Z. Naturforsch. 28c: 737–741.Google Scholar
  14. Kung, S. D., Gray, J. C., Wildman, S. G. and Carlson, P. S. (1975). Polypeptide composition of fraction I protein from parasexual hybrid plants in the genus Nicotiana. Science 187: 353–355.Google Scholar
  15. Laboratory of Plant Cell and Tissue Culture, 401 Research Group, Institute of Genetics, Academia Sinica (1975). Primary study on induction of pollen plants of Zea mays. (Chinese with English summary.) Acta Genet. Sinica 2: 138–143.Google Scholar
  16. Laboratory of Genetics, Kwantung Institute of Botany (1975). Studies on anther culture in vitro in Oryza sativa subsp. Shien I. The role of basic medium and supplemental constituents in callus induced from anther and in differentiation of root and shoot. Acta Genet. Sin. 2: 81–89.Google Scholar
  17. Maliga, P., Breznovits, A., and Marton, L. (1973). Streptomycin resistant plants from callus culture of haploid tobacco. Nature New Biol. 244: 29–30.PubMedGoogle Scholar
  18. Melchers, G. (1939). Genetik und Evolution. Bericht eines Botanikers. Z. Vererbungslehre 76: 229–259.CrossRefGoogle Scholar
  19. Melchers, G. (1960). Haploide Bliitenpflanzen als Material der Mutations–Ziichtung. Beispiele: Blattfarbmutanten und Mutatio wettsteini von Antirrhinum majus. Ziichter 30: 129–134.Google Scholar
  20. Melchers, G. (1965). Einige genetische Gesichtspunkte zu sogenannten Gewebekulturen. Ber. Deut. Bot. Ges. 78: 21–29.Google Scholar
  21. Melchers, G. (1973). Summation: Haploid research in higher plants. In Proc. Haploids in Higher Plants–Advances and Potential, Int. Symp., Guelph, Canada ( Kasha, K. J., ed.), pp. 391–401. Univ. of Guelph, Canada.Google Scholar
  22. Melchers, G. (1977). Protoplast fusion and plants from fusion. (12th Int. Bot. Congress, Leningrad, 1975) In Physiology and Biochemistry of Cultural Plants.Google Scholar
  23. Melchers, G. and Bergmann, L. (1958–1959). Untersuchungen an Kulturen von haploiden Geweben von Antirrhinum majus. Ber. Deut. Bot. Ges. 71:459–473.Google Scholar
  24. Melchers, G. and Labib, G. (1970). Die Bedeutung haploider höherer Pflanzen für Pflanzenphysiologie und –züchtung. Die durch Antherenkultur erzeugten Haploiden, ein neuer Durchbruch für die Pflanzenziichtung. Ber. Deut. Bot. Ges. 83: 129–150.Google Scholar
  25. Melchers, G. and Labib, G. (1973). Plants from protoplasts, significance for genetics and breeding. Collogn. Int. CNRS No. 212, Protoplastes et fusion de cellules somatiques végétales, pp. 367–372.Google Scholar
  26. Melchers, G. and Labib, G. (1974). Somatic hybridization of plants by fusion of protoplasts. I. Selection of light resistant hybrids of “haploid” light sensitive varieties of tobacco. Mol. Gen. Genet. 135: 277–294.CrossRefGoogle Scholar
  27. Melchers, G. and Sacristdn, M. D. (1977). Somatic hybridization of plants by fusion of protoplasts. II. The chromosome numbers of somatic hybrid plants of 4 different fusion experiments. Recueil de Travaux Dédiés h `la mémoire de G. Morel“ (Gautheret, G. J., ed. ). Masson et Cie, Paris.Google Scholar
  28. Nakamura, A., Yamada, I., Kadotani, N., and Itagaki, R. (1974). Improvement of flue–cured tobacco variety MC 1610 by means of haploid breeding method and investigations on some problems of this method. Proc. Haploids in Higher Plants–Advances and Potential, (Kasha, K. J. ed.), pp. 277–278. University of Guelph, Canada.Google Scholar
  29. Ouyang, T. W., Hu, H., Chuang, C. C., and Tseng, C. C. (1973). Induction of pollen plants from anthers of Triticum aestivum L. cultured in vitro. Sci. Sin. 16: 79–95.Google Scholar
  30. Pogliaga, H. H. (1952). Hibrido intergenerico “Nicotiana X Petunia”. Rev. Argent. Agron. 19: 171–178.Google Scholar
  31. Renner, O. (1934). Die pflanzlichen Plastiden als selbständige Elemente der genetischen Konstitution. Ber. Math. Phys. Klasse Sächsischen Akad. Wiss. 86: 241–266.Google Scholar
  32. Sacristân, M. D. and Melchers, G. (1969). The caryological analysis of plants regenerated from tumorous and other callus cultures of tobacco. Mol. Gen. Genet. 105: 317–333.PubMedCrossRefGoogle Scholar
  33. Sakano, K., Kung, S. D., and Wildman, S. G. (1974). Identification of several chloroplast DNA genes which code for the large subunit of Nicotiana Fraction I proteins. Mol. Gen. Genet. 130: 91–97.CrossRefGoogle Scholar
  34. Schieder, O. (1975). Selektion einer somatischen Hybriden nach Fusion vom Protoplasten auxotropher Mutanten von Sphaerocarpos donnellii. Aust. Z. Pflanz. 74: 357–364.CrossRefGoogle Scholar
  35. Stebbins, L. (1950). Variation and Evolution in Plants. Columbia Univ. Press, New York. Thomas, E. and Wenzel, G. (1975). Embryogenesis from microspores of Brassica napus. Z. Pflanz. 74: 77–81.Google Scholar
  36. Thomas, E., Hoffmann, F., and Wenzel, G. (1975). Haploid plantlets from microspore of rye. Z. Pflanz. 75: 106–113.Google Scholar
  37. Thomas, E., Hoffman, F., Potrykus, I., and Wenzel, G. (1976). Protoplast regeneration and stem embryogenesis of haploid androgenetic rape. Mol. Gen. Genet. 145: 245–247.CrossRefGoogle Scholar
  38. Wang, C. C., Chu, C. C. Sun, C. S., Wu, S. H., Yin, K. C., and Hsu, C. (1973). The androgenetis in wheat (Triticum aestivum) anthers cultured in vitro. Sci. Sin. 16: 218–222.Google Scholar
  39. Wang, C. C., Sun, C. S., and Chu, Z. C. (1974). On the conditions for the induction of rice pollen plantlets and certain factors affecting the frequency of induction., (Chinese with English summary.) Acta Bot. Sin. 16: 45–54.Google Scholar
  40. Wang, Y. S., Sun, C. S., Wang, C. C., and Chien, N. F. (1973). The induction of the pollen plantlets of Triticale and Capsicum annuum from anther culture. Sci. Sin. 16: 147–151.Google Scholar
  41. Wenzel, G. and Thomas, E. (1974). Observations on the growth in culture of anthers of Secale cereale. Z. Pflanz. 72: 89–94.CrossRefGoogle Scholar
  42. Wenzel, G., Hoffmann, F., Potrykus, I., and Thomas, E. (1975). The separation of viable rye microspores from mixed populations and their development in culture. Mol. Gen. Genet. 138: 293–297.CrossRefGoogle Scholar
  43. Zenkteler, M. and Melchers, G. (1977). Self and cross—pollination of ovules of several species in the test tubes. (In preparation.)Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Georg Melchers
    • 1
  1. 1.Max-Planck-Institut für BiologieTübingenFederal Republic of Germany

Personalised recommendations