Advertisement

Biophysical and Genetic Evidence for Transformation in Plants

  • L. Ledoux
Part of the Basic Life Sciences book series (BLSC, volume 8)

Abstract

In thiamine mutants of Arabidopsis, genetic corrections have been obtained by treatment with DNA bearing a thiamine information. When correction is attempted under selective conditions, about 0.7% of the treated plants grow and set fruit. Their progeny and the following ones, obtained by selfing, behave as homozygotes. Segregation of characters is found only when correction is attempted under nonselective conditions or when the correcting genes were of plasmidian origin. The correction is hereditary; results of backcrosses and test crosses indicate that it is dominant, nuclear, and strongly bound to the genome. The corrective factor appears to be added to the mutated genome and not substituted for the mutation, as it can be suppressed by outcrossing with the wild type or with a plant corrected by another DNA.

Keywords

Selective Condition Petunia Hybrida Nonselective Condition Reassociation Kinetic Genetic Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bendich, A. J. and Filner, P. 1971. Uptake of exogenous DNA by pea seedlings and tobacco cells. Mutat. Res. 13: 199–214.CrossRefGoogle Scholar
  2. Brown, J., Huart, R., Ledoux, L., and Swinnen, J. (1971). High specific radioactivity of a heavy DNA fraction in progeny of Arabidopsis treated by M. lysodeikticus DNA. Arch. Int. Physiol. Biochim. 79: 820–821.PubMedGoogle Scholar
  3. Coumanne, C., Jacqmard, A., Kinet, J. M., Bodson, M., Ledoux, L. and Huart, R. (1971). Translocation and distribution of bacterial DNA in Sinapis alba. Arch. Int. Physiol. 79: 823–824.PubMedGoogle Scholar
  4. Doy, C., Gresshoff, P. M., and Rolfe, B. (1973a). Transgenous of bacterial genes from E. coli to culture of lycopersiconese and haploid Arabidopsis thaliana. In Plant Cells in Biochemistry of Gene Expression in Higher Organisms, ( Pollack, R., and Lee, L., eds.) pp. 21–37. New Zealand Book Co., Sydney.Google Scholar
  5. Doy, C. M., Gresshoff, P. M., and Rolfe, B. (1973b). Biological and molecular evidence for the transgenosis of genes from bacteria to plants. Proc. Natl. Acad. Sci. USA 70: 723–726.PubMedCrossRefGoogle Scholar
  6. Fox, A. S., Yoon, S. B., Duggleby, W. F., and Gelbart, W. M. (1971). Genetic transformation in Drosophila. In Informative Molecules in Biological Systems ( Ledoux, L., ed.), pp. 313–333. North-Holland, Amsterdam.Google Scholar
  7. Fox, M. and Ayad, S. R. (1972). Uptake and integration of exogenous DNA by lymphoma cells. In Uptake of Informative Molecules by Living Cells ( Ledoux, L., ed.), pp. 295–326. North-Holland, Amsterdam.Google Scholar
  8. Hanson, R. S. and Chilton, M. D. (1975). On the question of integration of A. tumefaciens DNA by tomato plants. J. Bacteriol. 124: 1220–1224.PubMedGoogle Scholar
  9. Hemleben, V., Ermisch, N., Kimmich, D., Leber, B., and Peter, G. (1975). Studies on the fate of homologous DNA applied to seedlings of Matthiola incana. Eur. J. Biochem. 56: 403–410.CrossRefGoogle Scholar
  10. Hess, D. (1969). Versuche zur Transformation an höheren Pflanzen: Induktion und konstante Weitergabe der Anthocyansynthese bei Petunia hybrida. A. Pflanz. 60: 348–358.Google Scholar
  11. Hess, D. (1973). Transformationsversuche an höheren Pflanzen. Untersuchungen zur Realization des Exosomen-Modells der Transformation bei Petunia hybrida. Z. Pflanz. 68: 432–440.CrossRefGoogle Scholar
  12. Hess, D. (1975). Uptake of DNA and bacteriophage into pollen and genetic manipulation. In Genetic Manipulations with Plant Material ( Ledoux, L., ed.), pp. 519–538. Plenum Press, New York.Google Scholar
  13. Hoffman, F. and Hess, D. (1973). Die Aufnahme radioaktiv markierter DNS in isolierte Protoplasten von Petunia hybrida. Z. Pflanz. 69: 81–83.CrossRefGoogle Scholar
  14. Hotta, Y. and Stern, H. (1971). Uptake and distribution of heterologous DNA in living cells. In Informative Molecules in Biological Systems ( Ledoux, L., ed.), pp. 176–186. North-Holland, Amsterdam.Google Scholar
  15. Kleinhoffs, A., Eden, F., Chilton, M. D., and Bendich, A. (1975). On the question of integration of exogenous bacterial DNA into plant DNA. Proc. Natl. Acad. Sci. USA 72: 2748–2751.CrossRefGoogle Scholar
  16. Ledoux. L. (1975). Fate of exogenous DNA in plants. In Genetic Manipulations with Plant Materials ( Ledoux, L., ed.), pp. 479–498. Plenum Press, New York.Google Scholar
  17. Ledoux, L. and Huart, R. (1968). Integration and replication of DNA of M. lysodeikticus in DNA of germinating barley. Nature (London) 218: 1256–1259.CrossRefGoogle Scholar
  18. Ledoux, L. and Huart, R. (1969). Fate of exogenous bacterial DNA in barley seedlings. J. Mol. Biol. 43: 243–262.PubMedCrossRefGoogle Scholar
  19. Ledoux. L. and Huart, R. (1975a). Importance of DNA size for integration in plant materials. Arch. Int. Physiol. Biochim. 83: 194–195.Google Scholar
  20. Ledoux, L. and Huart, R. (1975b). Integration and replication of DNA in barley root cells. Arch. Int. Physiol. Biochim. 83: 196–197.PubMedGoogle Scholar
  21. Ledoux. L. and Jacobs, M. (1969). Redistribution, lors de la floraison, des DNA exogènes absorbés par des graines d’Arabidopsis thaliana. Arch. Int. Physiol. Biochim. 77: 568–569.Google Scholar
  22. Ledoux. L., Huart, R. and Jacobs, P. (1971). Fate of exogenous DNA in Arabidopsis thaliana. Eur. J. Biochem. 23: 96–108.CrossRefGoogle Scholar
  23. Ledoux, L., Brown, J., Charles, P., Huart, R., Jacobs, M., Remy, J., and Watters, C. (1972). Fate of exogenous DNA in mammals and plants. Adv. Biosci. 8: 347–367.Google Scholar
  24. Ledoux. L., Huart, R., and Jacobs, M. (1974). DNA-mediated genetic correction of thiamineless Arabidopsis thaliana. Nature (London) 249: 17–21.CrossRefGoogle Scholar
  25. Ledoux. L., Huart, R., Mergeay, M., Charles, P., and Jacobs, M. (1975). DNA-mediated genetic correction of thiamineless Arabidopsis thaliana. In Genetic Manipulations with Plant Material ( Ledoux, L., ed.), pp. 499–517. Plenum Press, New York.Google Scholar
  26. Ledoux, L., Huart, R., and Jacobs, M. In preparation Google Scholar
  27. Lurquin, P. and Behki, R. M. (1975). Use of molecular sieving on agarose gels to study DNA uptake by Chlamydomonas reinhardi. Mutat. Res. 29: 35–38.PubMedCrossRefGoogle Scholar
  28. Lurquin, P. and Hotta, Y. (1975). Reutilization of bacterial DNA by Arabidopsis cells in tissue culture. Plant Sci. Lett. 5: 103–112.CrossRefGoogle Scholar
  29. Lurquin, P. and Kado, C. (1976). Studies on A. tumefaciens: Fate of exogenously added bacterial DNA in Nicotiana tabacum. Physiol. Plant. Pathol. 8: 73–82.CrossRefGoogle Scholar
  30. Luyindula, N., Lurquin, P., and Ledoux, L. (unpublished results).Google Scholar
  31. Merril, C., Geier, M., and Petricciani, J. (1971). Bacterial virus gene expression in human cells. Nature (London) 233: 398–400.CrossRefGoogle Scholar
  32. Ohyama, K., Gamborg, O. L., and Miller, R. A. (1972). Uptake of exogenous DNA by plant protoplasts. Can. J. Bot. 50: 2077–2080.CrossRefGoogle Scholar
  33. Rédei, G. (1970). Arabidopsis thaliana. A review of the genetics and biology. Biblio. Genet. 20: 20 pp.Google Scholar
  34. Rédei, G. (1975). Induction of auxotrophic mutations in plants. In Genetic Manipulations with Plant Material ( Ledoux, L., ed.), pp. 329–350. Plenum Press, New York.Google Scholar
  35. Smith, H., McKee, R. A., Attridge, T. H., and Grierson, D. (1975). Studies on the use of transducing bacteriophages as vectors for the transfer of foreign genes to higher plants. In Genetic Manipulations with Plant Material ( Ledoux, L., ed.), pp. 551–564. Plenum Press, New York.Google Scholar
  36. Stroun, M., Anker, P., and Ledoux, L. (1967). DNA replication in Solanum lycopersicum after absorption of bacterial DNA. Curr. Mod. Biol. 1: 231–234.PubMedGoogle Scholar
  37. Turbin, N. V., Soyfer, V. N., Kartei, N. A., Chekalin, N. M., Dorokov, Y. L., Titov, Y. B., and Cieminis, K. K. (1975). Genetic modification of the waxy character in barley under the action of exogenous DNA of the wild variety. Mutat. Res. 27: 59–68.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • L. Ledoux
    • 1
  1. 1.Centre d’Etudes de l’Energie Nucléaire, MolUniversité de LiègeLiègeBelgium

Personalised recommendations