Prospects for Crop Improvement through Plant Tissue Culture

  • W. R. Scowcroft
Part of the Basic Life Sciences book series (BLSC, volume 8)


The threat of severe malnutrition for much of the world’s population can only be mitigated if food production can be increased and sustained at an annual rate of 3.5%. Upgrading the efficiency of plant improvement will be of utmost importance in this quest. More efficient genetic manipulation in plants could result from the development and applicaton of new techniques of plant cell and tissue culture.

Cells of many plant species can be cultured under defined conditions, and for some species whole plants can be differentiated from cultured cells. Moreover, techniques exist for the production of haploid plants and cell lines. These features provide several potential advantages for plant improvement. First, large numbers of cells can be screened in culture for gene functions which can be defined biochemically. Second, the production of haploid plants by pollen culture greatly facilitates the selection of favorable gene combinations. Third, plant cell protoplasts can be isolated and cultured, and will undergo fusion. Plant cell hybridization could lead to a means of transferring valuable genetic information across species barriers. Plant cell culture studies have already provided information which might lead to the development of nonlegume crops which are less dependent on nitrogen fertilizers. Strategies whereby this might be achieved involve interactive research between plant cell culture and biological nitrogen-fixing microorganisms.


Nitrogen Fixation Somatic Hybridization Anther Culture Crop Improvement Plant Tissue Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baroncelli, S., Buiatti, M., and Bennici, A. (1973). Genetics of growth and differentiation “in vitro” of Brassica oleracea var. botytis. I. Difference between six inbred lines. J. Plant Breed. 70: 99–107.Google Scholar
  2. Berlyn, M. B. and Zelitch, I. (1975). Photoautotrophic growth and photosynthesis in tobacco callus cells. Plant Physiol. 56: 752–756.PubMedCrossRefGoogle Scholar
  3. Bright, S. W. J. and Northcote, D. H. (1975). A deficiency of hypoxanthine phosphoribosyltransferase in sycamore callus resistant to azaguanine. Planta 123: 79–89.CrossRefGoogle Scholar
  4. Brock, R. D. and Langridge, J. (1973). Prospects for genetic improvement of seed proteins in plants. In Breeding for Seed Protein Improvement Using Nuclear Techniques, pp. 3–13. Int. Atomic Energy Agency, Vienna.Google Scholar
  5. Brown, L. R. (1975). The world food prospect. Science 190: 1053–1059.Google Scholar
  6. von Bülow, J. F. W. and Döbereiner, J. (1975). Potential for nitrogen fixation in maize genotypes in Brazil. Proc. Natl. Acad. Sci. USA 72: 2389–2393.CrossRefGoogle Scholar
  7. Burgess, J. and Fleming, E. N. (1974). Ultrastructural studies of the aggregation and fusion of plant protoplasts. Planta 118: 183–193.CrossRefGoogle Scholar
  8. Cannon, F. C., Dixon, R. A., Postgate, J. R., and Primrose, S. B. (1974). Chromosomal integration of Klebsiella nitrogen fixation genes in Escherichia coli. J. Gen. Microbiol. 80: 227–239.PubMedGoogle Scholar
  9. Carlson, P. S. (1973a). Methionine sulfoximine resistant mutants of tobacco. Science 180: 1366–1368.PubMedCrossRefGoogle Scholar
  10. Carlson, P. S. (1973b). The use of protoplasts for genetic research. Proc. Natl. Acad. Sci. USA 70: 598–602.PubMedCrossRefGoogle Scholar
  11. Carlson, P. S. and Chaleff, R. S. (1974). Forced association between higher plant and bacterial cells in vitro. Nature (London) 252: 393–394.CrossRefGoogle Scholar
  12. Carlson, P. S., and Polacco, J. C. (1975). Plant cell cultures: Genetic aspects of crop improvement. Science 188: 622–625.PubMedCrossRefGoogle Scholar
  13. Carlson, P. S., Smith, H. H., and Dearing, R. D. (1972). Parasexual interspecific plant hybridization. Proc. Natl. Acad. Sci. USA 69: 2292–2294.PubMedCrossRefGoogle Scholar
  14. Chaleff, R. S., and Carlson, P. S. (1974). Somatic cell genetics of higher plants. Annu. Rev. Genet. 8: 267–278.PubMedCrossRefGoogle Scholar
  15. Chaleff, R. S., and Carlson, P. S. (1975). Higher plants as experimental organisms. In Modification of the Information Content of Plant Cells (Markham, R., Davies, D. R., Hopwood, D. A., and Home, R. W., eds.),pp. 197–214. North-Holland, Amsterdam.Google Scholar
  16. Chang, A. C. Y., and Cohen, S. N. (1974). Genome construction between bacterial species in vitro: Replication and expression of Staphylococcus plasmid genes in Escherichia coli. Proc. Natl. Acad. Sci. USA 71: 1030–1034.PubMedCrossRefGoogle Scholar
  17. Cheng, T-Y., and Smith, H. H. (1975). Organogenesis from callus culture of Hordeum vulgare. Planta 123: 307–310.CrossRefGoogle Scholar
  18. Child, J. J. (1975). Nitrogen fixation by Rhizobium sp. in association with non-leguminous plant cell cultures. Nature (London) 253: 350–351.CrossRefGoogle Scholar
  19. Clapham, D. (1973). Haploid hordeum plants from anthers in vitro. Z. Pflanz. 69: 142–155.CrossRefGoogle Scholar
  20. Cocking, E. C. (1972). Plant cell protoplasts-isolation and development. Annu. Rev. Plant PhysioL 23: 29–50.CrossRefGoogle Scholar
  21. Collins, G. B., Legg, P. D., and Kasperbauer, M. J. (1974). Use of anther-derived haploids in Nicotiana. I. Isolation of breeding lines differing in total alkaloid content. Crop. Sci. 14: 77–80.CrossRefGoogle Scholar
  22. Dix, P. J., and Street, H. E. (1974). Effects of p-fluorophenylalanine (PFP) on the growth of cell lines differing in ploidy and derived from Nicotiana sylvestris. Plant. Sci. Lett. 3: 283–288.CrossRefGoogle Scholar
  23. Doy, C. H., Gresshoff, P. M., and Rolfe, B. H. (1973). Biological and molecular evidence for the transgenosis of genes from bacteria to plant cells. Proc. Natl. Acad. Sci. USA 20: 723–726.CrossRefGoogle Scholar
  24. Dunican, L. K. and Tierney, A. B. (1974). Genetic transfer of nitrogen fixation from Rhizobium trifolii to Klebsiella aerogenes. Biochem, Biophys. Res. Commun. 57: 62–72.CrossRefGoogle Scholar
  25. Eriksson, T., Bonnett, H., Glimelius, K., and Wallin, A. (1974). Technical advances in protoplast isolation, culture and fusion. In Tissue Culture and Plant Science ( H. E. Street, ed.), pp. 213–232. Academic Press, London.Google Scholar
  26. Gamborg, O. L. and Wetter, L. R., eds. (1974). Plant Tissue Culture Methods. National Research Council of Canada, Ottawa.Google Scholar
  27. Green, C. E. and Phillips, R. L. (1975). Plant regeneration from tissue cultures in maize. Crop Sci. 15: 417–421.CrossRefGoogle Scholar
  28. Grierson, D., McKee, R. A., Attridge, T. H., and Smith, H. (1975). Studies on the uptake and expression of foreign genetic material by higher plant cells. In Modification of Information Content of Plant Cells ( Markham, R., Davies, D. R., Hopwood, D. A., and Horne, R. W., eds.) pp. 91–99. North-Holland, Amsterdam.Google Scholar
  29. Griffing, B. (1975). Efficiency changes due to use of doubled-haploids in recurrent selection methods. Theoret. Appl. Genet. 46: 367–386.Google Scholar
  30. Guha, S. and Maheshwari, S. C. (1964). In vitro production of embryos from anthers of Datura. Nature (London) 204: 497.CrossRefGoogle Scholar
  31. Gupta, N. and Carlson, P. S. (1972). Preferential growth of haploid plant cells in vitro. Nature (London) 239: 86.Google Scholar
  32. Hardy, R. W. F. and Havelka, U. D. (1975). Nitrogen fixation research: A key to world food. Science 188: 633–643.PubMedCrossRefGoogle Scholar
  33. Helgeson, J. P., Haberlach, G. T., and Upper, C. D. (1976). A dominant gene conferring disease resistance to tobacco plants is expressed in tissue cultures. Phytopathology 66: 91–96.CrossRefGoogle Scholar
  34. Johnson, C. B., Grierson, D., and Smith, H. (1973). Expression of Xplac5 DNA in cultured cells of a higher plant. Nature New Biol. 244: 105–107.PubMedCrossRefGoogle Scholar
  35. Kao, K. N. and Michayluk, M. R. (1974). A method for high-frequency intergeneric fusion of plant protoplasts. Planta 115: 355–367.CrossRefGoogle Scholar
  36. Kao, K. N., Constabel, F., Michayluk, M. R., and Gamborg, O. L. (1974). Plant protoplast fusion and growth of intergeneric hybrid cells. Planta 120: 215–227.CrossRefGoogle Scholar
  37. Kasha, K. J., ed. (1974). Haploids in Higher Plants-Advances and Potential. Univ. of Guelph, Ontario.Google Scholar
  38. Kedes, L. H., Chang, A. C. Y., Houseman, D., and Cohen, S. N. (1975). Isolation of histone genes from unfractionated sea urchin DNA by subculture cloning in E. coli. Nature (London) 255: 533–538.CrossRefGoogle Scholar
  39. Keller, W. A. and Melchers, G. (1973). The effect of high pH and calcium on tobacco leaf protoplast fusion. Z. Naturforsch. 28: 737–741.Google Scholar
  40. Kimber, G. and Riley, R. (1963). Haploid angiosperms. Bot. Rev. 29: 490–531.CrossRefGoogle Scholar
  41. Kleinhoffs, A., Eden, F. C., Chilton, M. -D., and Bendich, A. J. (1975). On the question of integration of exogenous bacterial DNA. Proc. Natl. Acad. Sci. USA 72: 2748–2752.CrossRefGoogle Scholar
  42. Kruse, P. F. and Patterson, M. K., eds. (1973). Tissue Culture: Methods and Applications. Academic Press, New York.Google Scholar
  43. Ledoux, L. ed. (1971). Informative Molecules in Biological Systems. North-Holland, Amsterdam.Google Scholar
  44. Ledoux, L. and Huart, R. (1974). DNA-mediated genetic correction of thiamineless Ara bidopsis thaliana. Nature (London) 249: 17–21.CrossRefGoogle Scholar
  45. Lescure, A. M. (1973). Selection of markers for resistance to base-analogues in somatic cell cultures of Nicotiana tabacum. Plant. Sci. Lett. 1: 375–383.CrossRefGoogle Scholar
  46. Lurquin, P. F. and Hotta, Y. (1975). Reutilization of bacterial DNA by Arabidopsis thaliana cells in tissue culture. Plant Sci. Lett. 5: 103–112.CrossRefGoogle Scholar
  47. Maliga, P., Sz-Breznovits, A., and Marton, L. (1973a). Streptomycin-resistant plants from callus culture of haploid tobacco. Nature New Biol. 244: 29–30.PubMedGoogle Scholar
  48. Maliga, P., Marton, L., and Sz-Breznovits, A. (1973b). 5-Bromodeoxyuridine-resistant cell lines from haploid tobacco. Plant Sci. Lett. 1: 119–121.Google Scholar
  49. McComb, J. A. (1974). New techniques for plant breeding. J. Aust. Inst. Agri. Sci 40: 3–10.Google Scholar
  50. Melchers, G. (1972). Haploid higher plants for plant breeding. Z. Pflanz. 67: 19–32.CrossRefGoogle Scholar
  51. Melchers, G. and Labib, G. (1974). Somatic hybridization of plants by fusion of protoplasts. I. Selection of light resistant hybrids of “Haploid” light sensitive varieties of tobacco. Mol. Gen. Genet. 135: 277–194.CrossRefGoogle Scholar
  52. Murashige, T. (1974). Plant propagation through tissue cultures. Annu. Rev. Plant Physiol. 25: 135–166.CrossRefGoogle Scholar
  53. Nabors, M. W., Daniels, A., Nadolny, L., and Brown, C. (1975). Sodium chloride tolerant lines of tobacco cells. Plant Sci. Lett. 4: 155–159.CrossRefGoogle Scholar
  54. Nakamura, A., Yamada, T., Kadotani, N., Itagaki, R., and Oka, M. (1974). Studies on the haploid method of breeding in tobacco. SABRAO J. 6: 107–131.Google Scholar
  55. Nickell, L. G., and Heinz, D. J. (1974). Potential of cell and tissue culture techniques as aids in economic plant improvement. In Genes, Enzymes and Populations. ( Srb, A. M., ed.), pp. 109–128. Plenum Press, New York.Google Scholar
  56. Niizeki, H. and Oono, K. (1968). Induction of haploid rice plant from anther culture. Proc. Jap. Acad. 44: 554–556.Google Scholar
  57. Nishi, T., Yamada, Y., and Takahashi, E. (1973). The role of auxins in differentiation of rice tissue cultures in vitro. Bot. Mag. Tokyo 86: 183–188.CrossRefGoogle Scholar
  58. Nitsch, J. P. (1972). Haploid plants from pollen. Z. Pflanz. 67: 3–18.Google Scholar
  59. Ouyang, T., Hu, H., Chuang, C., and Tseng, C. (1973). Induction of pollen plants from anthers of Triticum aestiuum L. cultures in vitro. Sci. Sin. 16: 79–95.Google Scholar
  60. Pagan, J. D., Child, J. J., Scowcroft, W. R., and Gibson, A. H. (1975). Nitrogen fixation byGoogle Scholar
  61. Rhizobium cultured on a defined medium. Nature (London) 256:406–407.Google Scholar
  62. Palmer, J. E. and Widholm, J. (1975). Characterization of carrot and tobacco cell culturesGoogle Scholar
  63. resistant to p-fluorophenylalanine. Plant Physiol. 56:233–238.Google Scholar
  64. Power, J. B., Cummings, S. E., and Cocking, E. C. (1970). Fusion of isolated plant protoplasts. Nature (London) 225: 1016–1018.CrossRefGoogle Scholar
  65. Power, J. B., Frearson, E. M., Hayward, C., and Cocking, E. C. (1975). Some consequences of the fusion and selective culture of petunia and parthenocissus protoplasts. Plant Sci. Lett. 5: 197–207.CrossRefGoogle Scholar
  66. Scowcroft, W. R. (1975). The potential use of somatic cell genetics in plant improvement. SABRAO J. 7: 147–158.Google Scholar
  67. Scowcroft, W. R. and Adamson, J. A. (1976). Organogenesis from callus cultures of the legume, Stylosanthes hamata. Plant Sci. Lett. 7: 39–42.CrossRefGoogle Scholar
  68. Scowcroft, W. R. and Gibson, A. H. (1975). Nitrogen fixation by Rhizobium associated with tobacco and cowpea cell cultures. Nature (London) 253: 351–352.CrossRefGoogle Scholar
  69. Shanmugam, K. T. and Valentine, R. C. (1975). Molecular biology of nitrogen fixation. Science 187: 919–924.PubMedCrossRefGoogle Scholar
  70. Shephard, J. F. and Totten, R. E. (1975). Isolation and regeneration of tobacco mesophyll cell protoplasts under low osmotic conditions. Plant Physiol. 55: 689–694.CrossRefGoogle Scholar
  71. Smith, H. H. (1974). Model systems for somatic cell plant genetics. Bioscience 24: 269–276.CrossRefGoogle Scholar
  72. Street, H. E., ed. (1973). Plant Tissue and Cell Culture. Blackwell Scientific Publications, Oxford.Google Scholar
  73. Street, H. E. and Withers, L. A. (1974). The anatomy of embryogenesis in culture. In Tissue Culture and Plant Science 1974 ( Street, H. E., ed.), pp. 71–100. Academic Press, London.Google Scholar
  74. Sunderland, N. and Dunwell, J. M. (1974). Pathways in pollen embryogenesis. In Tissue Culture and Plant Science 1974 ( Street, H. E., ed.), pp. 141–168. Academic Press, London.Google Scholar
  75. Wark, D. C. (1975). Tobacco breeding and genetics. In Genetics Report 1975, pp. 43–46. Division of Plant Industry, CSIRO, Canberra.Google Scholar
  76. Watts, J. W. and King, J. M. (1973). The use of antibiotics in the culture of non-sterile plant protoplasts. Planta 113: 271–277.CrossRefGoogle Scholar
  77. Widholm, J. M. (1974). Selection and characteristics of biochemical mutants of cultured plant cells. In Tissue Culture and Plant Science ( Street, H. E., ed.), pp. 287–300. Academic Press, London.Google Scholar
  78. World Food and Nutrition Study: Interim Report. (1975). NRC Study on World Food and Nutrition. National Academy of Sciences, Washington, D.C.Google Scholar
  79. Zelitch, I. (1975). Improving the efficiency of photosynthesis. Science 188: 626–633.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • W. R. Scowcroft
    • 1
  1. 1.Division of Plant IndustryCSIROCanberraAustralia

Personalised recommendations