Artificial Mutagenesis as an Aid in Overcoming Genetic Vulnerability of Crop Plants

  • C. F. Konzak
  • R. A. Nilan
  • A. Kleinhofs
Part of the Basic Life Sciences book series (BLSC, volume 8)


Artificially induced genetic variation is being used effectively to supplement or complement sources of natural origin for practical plant breeding. Thus, creating genetic variation will become increasingly important as crop genetic resources become more difficult to obtain via plant exploration. The artificial induction of useful genetic variation offers important elements that can be used for overcoming genetic vulnerability: (1) new, previously unknown alleles can be induced in crop plant species to broaden the base of variation; (2) useful genetic variation can be induced in modern cultivars helping to shorten breeding time or to extend production “life”; (3) characteristics of existing genetic resource stocks can be improved to make them more useful in breeding; and (4) recombination in crosses may be enhanced. The performance of induced mutant crop cultivars and the successful uses of induced genetic variation in cross breeding indicate that artificial mutagenesis will play an increasingly greater role in plant breeding.


International Atomic Energy Agency Genetic Vulnerability Vernalization Response Sweet Clover Plant Exploration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Awan M. A. and Cheema, A. A. (1976). Performance of early flowering lines of rice variety Basmati-370. Mutat. Breed. Newsl. 7: 4–5.Google Scholar
  2. Blixt, S. (1974). The pea. Handbook of Genetics (King, R. C., ed.), Vol. 2, Chap. 9, pp. 183–184. Plenum Press, New York.Google Scholar
  3. Brock, R. D. (1971). The role of induced mutations in plant improvement. Radiat. Bot. 11:181–196.CrossRefGoogle Scholar
  4. Brock, R. D., Friederich, E. A., and Langridge, J. (1973). The modification of amino acid composition of higher plants by mutation and selection. In Nuclear Techniques for Seed Protein Improvement (STI/PUB/320), pp. 319–338. International Atomic Energy Agency, Vienna.Google Scholar
  5. Dumanovic, J., Ehrenberg, L., and Denic, M. (1970). Induced variation of protein content and composition in hexaploid wheat. In Improving Plant Protein by Nuclear Techniques. (STI/PUB/258), pp. 107–119. International Atomic Energy Agency, Vienna.Google Scholar
  6. Einfeld, C., Abdel-Hafex, A. G., Fuchs, W. H., Heitfuss, R., and Röbbelen, G. (1976). Investigations on resistance of barley against mildew (Erisiphe graminis). In Induced Mutations for Disease Resistance in Plants, pp. 81–90. International Atomic Energy Agency, Vienna.Google Scholar
  7. Freisleben, B. and Lein, A. (1942). Uber die Auffmdung einer mehltau-resistenten Mutante nach Röntgenbestrahlung einer anfälligen reinen Linie Von Sommergerste. Naturwissenschaften 30: 608.CrossRefGoogle Scholar
  8. Gale, M. D. and Marshall, G. A. (1976). The chromosomal location of Gai 1 and Rht 1, genes for gibberellin insensitivity and semidwarfism, in a derivative of Norin 10 wheat. Heredity 37: 283–289.CrossRefGoogle Scholar
  9. Gaul, H. (1964). Mutations in plant breeding. Radiat. Bot. 4: 155–232.CrossRefGoogle Scholar
  10. Gaul, H., Grunewaldt, J., and Hesemann, C. U. (1968). Variation of character expression of barley mutants in a changed genetic background. In Mutations in Plant Breeding II (STI/PUB/182), pp. 77–95. International Atomic Energy Agency, Vienna.Google Scholar
  11. Gengenbach, B. G., Haskins, F. A., and Gorz, H. J. (1969). Genetic studies of induced mutants in Melilotus alba. I. Short-internode dward, curled leaf, multifoliolate leaf, and cotyledonary branching. Crop Sci. 9: 607–610.CrossRefGoogle Scholar
  12. Gottschalk, W. (1968). Simultaneous mutation of closely linked genes: A contribution to the interpretation of ‘pleiotropic’ gene action. In Mutations in Plant Breeding II (STI/PUB/182), pp. 97–109. International Atomic Energy Agency, Vienna.Google Scholar
  13. Gustafsson, A. (1972). The genetic architecture of phenotype patterns in barley. In Induced Mutations and Plant Improvement (STI/PUB/297), pp. 7–12. International Atomic Energy Agency, Vienna.Google Scholar
  14. Gustafsson, A. (1975). Mutations in plant breeding-A glance back and a look forward. In Biomedical, Chemical and Physical Perspectives ( Nygaard, O. F., Adler, H. I., and Sinclair, W. K., eds.), pp. 81–95. Academic Press, Inc., New York.Google Scholar
  15. Hu, M. L. (1974). Genetic analyses of semidwarfing and insensitivity of gibberellin GA3 in hexaploid wheat (Triticum aestivum L. em The11.). Ph.D. dissertation, Washington State University, Pullman, Washington.Google Scholar
  16. Jacobs, M. (1965). Isolation of biochemical mutants in Arabidopsis. In Arabidopsis Research ( Röbbelen, G. ed.), Vol. 1, pp. 106–112. ( Arabidopsis Information Service Suppl.) Institut für Pflanzenbau and Pflanzenzüchtung, Universität Göttingen, Germany.Google Scholar
  17. Jain, H. K. and Pokhiryal, S. C. (1975). Improved Pearl millet hybrids. Mutat. Breed. Newsl. 6: 11–12.Google Scholar
  18. Jørgensen, J. H. (1976a). Studies on recombination between alleles in the mlo locus of barley and on pleiotropic effects of alleles. In Induced Mutations for Disease Resistance in Crop Plants, pp. 129–140. International Atmoic Energy Agency, Vienna.Google Scholar
  19. Jørgensen, J. H. (1976b). Identification of powdery mildew resistant barley mutants and their allelic relationship. In Barley Genetics III ( Gaul, H. ed.), pp. 446–455. Verlag Karl Thiemig, Munich.Google Scholar
  20. Kleinhofs, A. and Smith, J. A. (1976). Effect of excision repair on azide-induced muta-genesis. Murat. Res. 41: 233–240.Google Scholar
  21. Kleinhofs, A., Gorz, H. J., and Haskins, F. A. (1968). Mutation induction in Melilotus alba annua by chemical mutagens. Crop Sci. 8: 631–632.CrossRefGoogle Scholar
  22. Kleinhofs, A., Kleinschmidt, M., Sciaky, D., and Von Broembsen, S. (1975). Azide muta-genesis. In vitro studies. Mutat. Res. 29: 497–500.Google Scholar
  23. Konzak, C. F. (1976). A review of semi-dwarfing gene sources and a description of some new mutants useful for breeding short stature wheats. In Mutations in Crossbreeding, Proc. Advisory Group, pp. 79–93. International Atomic Energy Agency, Vienna.Google Scholar
  24. Konzak, C. F., Nilan, R. A., Froese-Gertzen, E. E., and Ramirez, I. A. (1963). Physical and chemical mutagens in wheat breeding. Hereditas [Suppl.] 2: 65–84.Google Scholar
  25. Lundqvist, U. (1976). Lucus distribution of induced eceriferum mutants in barley. In Barley Genetics III. ( Gaul, H. ed.), pp. 162–163. Verlag Karl Thiemig, Munich.Google Scholar
  26. Lundqvist, U., von Wettstein-Knowles, P., and von Wettstein, D. (1968). Induction of eceriferum mutants in barley by ionizing radiations and chemical mutagens. II. Hereditas 59: 473–504.CrossRefGoogle Scholar
  27. McCann, J., Choi, E., Yamasaki, E., and Ames, B. N. (1976). Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals. Part II. Proc. Natl. Acad. Sci. USA 73: 950–954.PubMedCrossRefGoogle Scholar
  28. Micke, A. (1962). Eine bitterstofffreie Mutante bei Melilotus albus nach Bestrahlung von Samen mit thermischen Neutronen. Naturwissenschaften 49: 332–333.CrossRefGoogle Scholar
  29. Micke, A. (1963). Genetisch-züchterische Arbeiten beim weissen Steinklee. Z. Acker Pflanz. 116: 354–360.Google Scholar
  30. Micke, A. (1969). Improvement of low yielding sweet clover mutants by heterosis breeding. In Induced Mutations in Plants (STI/PUB/231), International Atomic Energy Agency, Vienna.Google Scholar
  31. Mikaelsen, K., Saja, Z., and Simon, J. (1971). An early maturing mutant-Its value in breeding for disease resistance in rice. In Rice Breeding with Induced Mutations III (STI/DOC/10/131), pp. 97–101. International Atomic Energy Agency, Vienna.Google Scholar
  32. Murray, M. J. (1969). Successful use of irradiation breeding to obtain Verticillium-resistant strains of peppermint, Mentha piperita L. In Induced Muatations in Plants (STI/PUB/ 231), pp. 345–371. International Atomic Energy Agency, Vienna.Google Scholar
  33. Nilan, R. A. (1960). Barley research at Washington State University. Sdrt. Sver. Utsddesförenings Tidsk., 1–2: 110–118.Google Scholar
  34. Nilan, R. A. (1967). Nature of induced mutations in higher plants. In Induzierte Mutationen und Ihre Nutzung: Erwin-Baur-Gedächtnisvorlesungen IV ( Gröber, K., Scholz, F., and Zacharias, M., eds.), pp. 6–20. Akademie-Verlag, Berlin.Google Scholar
  35. Nilan, R. A. (1972). Mutagenic specificity in flowering plants: Facts and prospects. In Induced Mutations and Plant Improvement (STI/PUB/297), pp, /4/n151. International Atomic Energy Agency, Vienna.Google Scholar
  36. Nilan, R. A. and Vig, B. K. (1976). Plant test systems for detection of chemical mutagens. In Chemical Mutagens. Principles and Methods for Their Detection, (Hollaender, A. ed.), Vol. 4, Chap. 39, pp. 143–170. Plenum Press, New York.Google Scholar
  37. Nilan, R. A., Sideris, E. G., Kleinhofs, A., Sander, C., and Konzak, C. F. (1973). Azide-a potent mutagen. Mutat. Res. 17: 142–144.CrossRefGoogle Scholar
  38. Oostinder-Braaksma, F. J. and Feenstra, W. J. (1973). Isolation and characterization of chlorate-resistant mutants of Arabidopsis thaliana. Mutat. Res. 19: 175–185.CrossRefGoogle Scholar
  39. Persson, G. and Hagberg, A. (1969). Induced variation in a quantitative character in barley. Morphology and cytogenetics of erectoides mutants. Hereditas 61: 115–178.CrossRefGoogle Scholar
  40. Pontecorvo, G. (1954). Mitotic recombination in the genetic systems of filamentous fungi Caryologia [Supp1].J 6: 192–200.Google Scholar
  41. Pontecorvo, G. (1958). Trendes in Genetic Analysis. Columbia Univ. Press, New York.Google Scholar
  42. Pontecorvo, G. and Kafer, E. (1958). Genetic analysis based on mitotic recombination. Advan. Genet. 9: 71–104.CrossRefGoogle Scholar
  43. Powell, J. B. and Nilan, R. A. (1963). Influence of temperature on crossing over in an inversion heterozygote in barley. Crop Sci. 3: 11–13.CrossRefGoogle Scholar
  44. Sideris, E. G., Nilan, R. A., and Bogyo, T. P. (1973). Differential effect of sodium azide on the frequency of radiation-induced chromosome aberrations vs. the frequency of radiation-induced chlorophyll mutations in Hordeum vulgare. Radiat. Bot. 13: 315–322.CrossRefGoogle Scholar
  45. Sigurbjörnsson, B. (1976). The improvement of barley through induced mutation. In Barley Genetics III ( Gaul, H., ed.), pp. 84–95. Verlag Karl Thiemig, Munich.Google Scholar
  46. Sigurbjörnsson, B. and Micke, A. (1974). Philosophy and accomplishments of mutation breeding. In: Polyploidy and Induced Mutations in Plant Breeding (STI/PUB/359), pp. 303–343. International Atomic Energy Agency, Vienna.Google Scholar
  47. Smith, H. H. (1971). Broadening the base of genetic variability in plants. J. Hered. 62: 265–276.Google Scholar
  48. Ulland, B., Weisburger, E. K., and Weisburger, J. H. (1973). Chronic toxicity and carcinogenicity of industrial chemicals and pesticides. Toxicol. AppL Pharm. 25: 446 (Abst).Google Scholar
  49. Wiberg, A. (1974) Sources of resistance to mildew in barley. Hereditas 78: 1–40.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • C. F. Konzak
    • 1
  • R. A. Nilan
    • 1
  • A. Kleinhofs
    • 1
  1. 1.Department of Agronomy and Soils and Program in GeneticsWashington State UniversityPullmanUSA

Personalised recommendations