Prospects and Perspectives in Mutation Breeding

  • R. D. Brock
Part of the Basic Life Sciences book series (BLSC, volume 8)


Induction of mutations, primarily a method of generating genetic variation, can contribute to plant improvement when combined with selection, or recombination and selection, or with other methods of manipulating genetic variation. As a source of variability, induced mutations supplement naturally occurring variation. When specific mutants are selected following mutagenic treatments it is highly likely that a number of mutational changes will have occurred in the selected genotype. Hence, although most of the mutant varieties released so far have resulted from mutation and direct selection, the future trend will be for increasing use of mutants in association with recombination. Whereas induced mutations are generally regarded as random events, there are suggestions of some mutational specificity in response to different mutagenic agents and treatments. The best immediate prospects for increasing specificity lie in the manipulation of the selection environment. Biochemical selection applied to large numbers of plant cells in culture to locate mutations in specific biosynthetic pathways and the subsequent regeneration of whole plants offers great prospect for reducing the cost of breeding programs and altering the amount or composition of a desired end or intermediate product. Mutations in combination with other techniques of genetic engineering will constitute the tools of the plant breeders of the future. Their present role in plant breeding has been established. They have advantages in certain situations, disadvantages in others. Greater understanding will lead to their more widespread use.


Rust Resistance Direct Selection Mutant Variety Chemical Mutagen Stem Rust Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acosta, A. (1961). The transfer of stem rust resistance from rye to wheat. Ph.D. thesis, Univ. of Missouri, 56 pp.Google Scholar
  2. Auerbach, C. (1967). The chemical production of mutations. Science 158: 1141–1147.PubMedCrossRefGoogle Scholar
  3. Avery, O. T., Macleod, C. M., and McCarty, M. (1944). Studies on the chemical nature of the substance inducing transformation of pneumococcal types. I. Induction of transformation by a deoxyribonucleic acid fraction isolated from pneumococcus type III. J. Exp. Med. 79: 137–157.PubMedCrossRefGoogle Scholar
  4. Brock, R. D. (1971). The role of induced mutations in plant improvement. Radial. Bot. 11: 181–196.CrossRefGoogle Scholar
  5. Brock, R. D., Friederich, E. A., and Langridge, J. (1973). The modification of amino acid composition of higher plants by mutation and selection. Nuclear Techniques for Seed Protein Improvement (Proc. Symp. Neuherberg, 1972), pp. 329–338. IAEA, Vienna.Google Scholar
  6. Carlson, P. S. (1973a). Methionine sulfoximine-resistant mutants of tobacco. Science 180: 1366–1368.PubMedCrossRefGoogle Scholar
  7. Carlson, P. S. (1973b). The use protoplasts for genetic research. Proc. Natl. Acad. Sci. USA 70: 598–602.PubMedCrossRefGoogle Scholar
  8. Chaleff, R. S. and Carlson, P. S. (1974). Higher plant cells as experimental organisms. Modification of the Information Content of Plant Cells, pp. 197–214. North-Holland Amsterdam.Google Scholar
  9. Dobzhansky, T. (1951). Genetics and the Origin of Species, p. 364. Columbia Univ. Press, New York.Google Scholar
  10. Doy, C. H. (1975). The transfer and expression (transgenosis) of foreign genes in plant cells, reality and potential. The Eukaryote Chromosome, pp. 447–458. ANU PressGoogle Scholar
  11. Canberra. Doy, C. H., Gresshoff, P. M., and Rolfe, B. G. (1972). Transfer and expression (transgenosis) of bacterial genes in plant cells. Search 3: 447–448.Google Scholar
  12. Doy, C. H., Gresshoff, P. M., and Rolfe, B. G. (1973). Biological and molecular evidence for the transgenosis of genes from bacteria to plant cells. Proc. Natl. Acad. Sci. USA 70: 723–726.PubMedCrossRefGoogle Scholar
  13. Driscoll, C. J. and Jensen, N. F. (1963). A genetic method for detecting intergeneric translocations. Genetics 48: 459–468.PubMedGoogle Scholar
  14. Fox, A. S., Yoon, S. B., Duggleby, W. F., and Gelbart, W. M. (1971). Genetic transformation in Drosophila. Informative Molecules in Biological Systems, pp. 313–332. North-Holland, Amsterdam.Google Scholar
  15. Grierson, D., McKee, R. A., Attridge, T. H., and Smith, H. (1974). Studies on uptake and expression of foreign genetic material by higher plant cells. Modification of the Informa-don Content of Plant Cells pp. 91–99. North-Holland, Amsterdam.Google Scholar
  16. Gustafsson, A. (1977). Mutations in plant breeding-A glance back and a look forward. Proc. 5th Int. Congr. Radial. Res.,in press.Google Scholar
  17. Heimer, Y. M. and Filner, P. (1970). Regulation of the nitrate assimilation pathway of cultured tobacco cells. II. Properties of a variant cell line. Biochim. Biophys. Acta 215: 152–165.PubMedCrossRefGoogle Scholar
  18. Henderson, S. A. (1970). The time and place of meiotic crossing-over. Annu. Rev. Genet. 4: 295–324.PubMedCrossRefGoogle Scholar
  19. Hess, D. (1969a). Versuche zur Transformation an höheren Pflanzen: Induktion und konstante Weitergabe der Anthocyansythese bei Petunia hybrida. Z. Pflanzenphysiol. 60: 348–358.Google Scholar
  20. Hess, D. (1969b). Versuche zur Transformation an höheren Pflanzen: Wilderholung der Anthocyan-Induktion bei Petunia und erste Charakterisierung des transformierenden Prinzips. Z. Pflanzenphysiol. 61: 286–298.Google Scholar
  21. Hess, D. (1970). Versuche zur Transformation an höheren Pflanzen: Mögliche Transplantation eines Gens für Blattform bei Petunia hybrida. Z. Pflanzenphysiol. 63: 461–467.Google Scholar
  22. Hess, D. (1972). Transformationen an höheren Organismen. Naturwissenschaften 59: 348–355.PubMedCrossRefGoogle Scholar
  23. Hess, D. (1973). Transformationsversuche an höheren Pflanzen: Untersuchungen zur Realisation des Exosomen-Modells der Transformation bei Petunia hybrida. Z. Pflanzenphysiol 68: 432–440.CrossRefGoogle Scholar
  24. Hotta, Y. and Stern, H. (1971). Uptake and distribution of heterologous DNA in living cells. Informative Molecules in Biological Systems, pp. 176–184. North-Holland, Amsterdam.Google Scholar
  25. Kihlman, B. A. (1966). Action of Chemicals on Dividing Cells. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  26. Kleinhoffs, A., Eden, F. C., Chilton, M-D., and Bendich, A. J. (1975). On the question of the integration of exogenous bacterial DNA into plant DNA. Proc. Natl. Acad. Sci. USA 72: 2748–2752.CrossRefGoogle Scholar
  27. Knott, D. R. (1961). The inheritance of rust resistance. VI. The transfer of stem rust resistance from Agropyron elongatum to common wheat. Can. J. Plant Sci. 41: 109–123.CrossRefGoogle Scholar
  28. Ledoux, L. and Huart, R. (1961). Sur la possibilité d’un transfer d’acides ribo-et desoxyribonucleiques et de proteins dans les embryons d’orge en croissance. Arch. Intern. Physiol Biochim. 69: 598.Google Scholar
  29. Ledoux, L. and Huart, R. (1972). Fate of exogenous DNA in plants. Uptake of Informative Molecules by Living Cells, pp. 254–276. North-Holland, Amsterdam.Google Scholar
  30. Ledoux, L., Huart, R., and Jacobs, M. (1971a). Fate of exogenous DNA in Arabidopsis thaliana. I. Translocation and integration. Eur. J. Biochem. 23: 96–108.PubMedCrossRefGoogle Scholar
  31. Ledoux, L., Huart, R., and Jacobs, M. (1971b). Fate of exogenous DNA in Aradibopsis thaliana. II. Evidence for replication and preliminary results at the biological level. Informative Molecules in Biological Systems, pp. 159–172. North-Holland, Amsterdam.Google Scholar
  32. Ledoux, L., Huart, R., and Jacobs, M. (1974a). DNA-mediated genetic correction of thiamineless Arabidopsis thaliana. Nature 249: 17–21.Google Scholar
  33. Ledoux, L., Huart, R., Mergeay, M., Charles, P., and Jacobs, M. (1974b). DNA-mediated genetic correction of thiamineless Arabidopsis thaliana. Modification of the Information Content of Plant Cells, pp. 67–89. North-Holland, Amsterdam.Google Scholar
  34. Lundqvist, U., von Wettstein-Knowles, P., and von Wettstein, D. (1968). Induction of eceriferum mutants in barley by ionizing radiations and chemicals. II. Hereditas 59: 473–504.CrossRefGoogle Scholar
  35. Lurquin, P. F. and Hotta, Y. (1975). Reutilization of bacterial DNA by Arabidopsis thaliana cells in tissue culture. Plant Sci. Lett. 5: 103–112.CrossRefGoogle Scholar
  36. Nakayama, K., Tanaka, H., Hagino, H., and Kinoshita, S. (1966). Studies on lysine fermentation. Part V. Concerted feedback inhibition of aspartokinase and the absence of lysine inhibition on aspartic semialdehyde-pyruvate condensation in Micrococcus glutamicus. Agric. Biol. Chem. 30: 611–616.CrossRefGoogle Scholar
  37. Nilan, R. A. (1972). Mutagenic specificity in flowering plants: Facts and Prospects. Induced Mutations and Plant Improvement, pp. 141–151. IAEA, Vienna.Google Scholar
  38. Palmer, J. E. and Widholm, J. (1975). Characterization of carrot and tobacco cell cultures resistant to p-fluorophenylalamine. Plant Physiol. 56: 233–238.PubMedCrossRefGoogle Scholar
  39. Persson, G. and Hagberg, A. (1969). Induced variation in a quantitative character in barley. Morphology and cytogenetics of erectoides mutants. Hereditas 61: 115–178.CrossRefGoogle Scholar
  40. Rédei, G. P. (1974). Economy in mutation experiments. Z. Pflanzenziiecht. 73: 87–96.Google Scholar
  41. Riley, R., Chapman, V., and Johnson, R. (1968). Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature 217: 383–384.CrossRefGoogle Scholar
  42. Scarascia-Mugnozza, G. T., Bagnara, D., and Bozzini, A. (1972). Mutagenesis applied to dumm wheat. Results and perspectives. Induced Mutations and Plant Improvement, pp. 183–197. IAEA, Vienna.Google Scholar
  43. Sharma, D. and Knott, D. R. (1966). The transfer of leaf rust resistance from Agropyron to Triticum by irradiation. Can. J. Genet. Cytol. 8: 137–143.Google Scholar
  44. Sears, E. R. (1956). The transfer of leaf-rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp. BioL 9: 1–22.Google Scholar
  45. Sigurbjornsson, B. and Micke, A. (1974). Philosophy and accomplishments of mutation breeding. Polyploidy and Induced Mutations in Plant Breeding, pp. 303–343. IAEA, Vienna.Google Scholar
  46. Singh, C. B., Brock, R. D., and Oram, R. N. (1974). Increased meiotic recombination by incorporated tritium. Radiat. Bot. 14: 139–145.CrossRefGoogle Scholar
  47. Weinhues, A. (1966). Transfer of rust resistance of Agropyron to wheat by addition, substitution and translocation. Proc. 2nd Int. Wheat Genet. Symp. Hereditas [Suppl.] 2: 370–381.Google Scholar
  48. Widholm, J. M. (1972a). Cultured Nicotiana tabacum cells with an altered anthranilate synthetase which is less sensitive to feedback inhibition. Biochim. Biophys. Acta 261: 52–58.PubMedCrossRefGoogle Scholar
  49. Widholm, J. M. (1972b) Anthranilate synthetase from 5-methytryptophan-susceptible and -resistant cultured Daucus carota cells. Biochim. Biophys. Acta 279: 48–57.PubMedCrossRefGoogle Scholar
  50. Widholm, J. M. (1974). Selection and characteristics of biochemical mutants of cultured plant cells. Tissue Culture and Plant Science, pp. 287–299. Academic Press, London.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • R. D. Brock
    • 1
  1. 1.CSIRO Division of Plant IndustryCanberraAustralia

Personalised recommendations