Advertisement

The Use of Aneuploids in Studies of Genetics, Breeding, and Evolution in Wheat

  • G. Kimber
Part of the Basic Life Sciences book series (BLSC, volume 8)

Abstract

In wheat a unique series of aneuploids is available, ranging from all 21 possible monosomics to complex types which are simultaneously deficient for one chromosome and duplicate for another. Furthermore, lines with chromosomes from related, alien species either added to or substituted for wheat chromosomes are in common cytological use. This contribution considers the use of this range of material in studies designed to elucidate the evolutionary relationships of the species, investigations of the genetics of a polyploid with cytological diploidization, and in potential breeding manipulations.

Keywords

Chromosome Pairing Common Wheat Hexaploid Wheat Wheat Chromosome Chiasma Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Athwal, R. S. and Kimber, G. (1972). The pairing of an alien chromosome with homoeologous chromosomes of wheat. Can. J. Genet. Cytol. 14: 325–333.Google Scholar
  2. Avivi, L. and Feldman, M. (1973). Mechanism of non–random chromosome placement in common wheat. Proc. 4th Int. Wheat Genet. Symp., Columbia, Missouri, pp. 627–633.Google Scholar
  3. Bielig, L. M. and Driscoll, C. J. (1971). Production of alien substitution lines in Triticum aestivum. Can. J. Genet. Cytol. 13: 429–436.Google Scholar
  4. Bielig, L. M. and Driscoll, C. J. (1973). Release of a series of MAS lines. Proc. 4th Int. Wheat Genet. Symp., Columbia, Missouri, pp. 147–150.Google Scholar
  5. Chang, T. D., Kimber, G., and Sears, E. R. (1973). Genetic analysis of rye chromosomes added to wheat. Proc. 4th Int. Wheat Genet. Symp., Columbia, Missouri, pp. 151–153.Google Scholar
  6. Crosby, A. R. (1957). Nucleolar activity of lagging chromosomes in wheat. Am. J. Bot. 44: 813–822.CrossRefGoogle Scholar
  7. Dover, G. A. (1973). The genetics and interactions of “A” and “B” chromosomes controlling meiotic chromosome pairing in the Triticinae. Proc. 4th Int. Wheat Genet. Symp., Columbia, Missouri, pp. 653–666.Google Scholar
  8. Driscoll, C. J. (1963). A genetic method for detecting induced intergeneric transfers of rust resistance. Proc. 2nd Int. Wheat Genet. Symp. Lund Hereditas 2: 460–461.Google Scholar
  9. Driscoll, C. J. (1972). XYZ system of producing hybrid wheat. Crop Sci. 12: 516–517.CrossRefGoogle Scholar
  10. Driscoll, C. J. (1973). A chromosomal male-sterility system of producing hybrid wheat. Proc. 4th Int. Wheat Genet. Symp., Columbia, Missouri, pp. 669–674.Google Scholar
  11. Driscoll, C. J. and Anderson, L. M., (1967). Cytogenetic studies of Transeca wheatrye translocation line. Can. J. Genet. Cytol. 9: 375–380.Google Scholar
  12. Driscoll, C. J. and Jensen, N. F. (1964). Chromosomes associated with waxlessness, awnedness and time of maturity of common wheat. Can. J. Genet. Cytol. 6: 324–333.Google Scholar
  13. Dvorak, J. (1972). Genetic variability in Aegilops speltoides affecting homoeologous pairing in wheat. Care. J. Genet. Cytol. 14: 371–380.Google Scholar
  14. Evans, L. E. (1964). Genome construction within the Triticinae. I. The synthesis of hexaploids (2n = 42) having chromosomes of Agropyron and Aegilops in addition to the A and B genomes of Triticum durum. Can. J. Genet. CytoL 6: 19–28.Google Scholar
  15. Feldman, M., Mello–Sampayo, T., and Sears, E. R. (1966). Somatic association in Triticum aestivum. Proc. Natl. Acad. Sci. USA 56: 1192–1199.CrossRefGoogle Scholar
  16. Fu, T. K. and Sears, E. R. (1973). The relationship between chiasmata and crossing over in Triticum aestivum. Genetics 75: 231–246.PubMedGoogle Scholar
  17. Gill, B. S. and Kimber, G. (1974). Giemsa C–banding and the evolution of wheat. Proc. Natl. Acad. Sci. USA 71: 4086–4090.PubMedCrossRefGoogle Scholar
  18. Gupta, P. K. (1969). Studies on transmission of rye substitution gametes in common wheat. Indian J. Genet. Plant Breed. 29: 163–172.Google Scholar
  19. Gustafson, J. P. and Zillinsky, F. J. (1973). Identification of D–genome chromosomes from hexaploid wheat in a 42–chromosome Triticale. Proc. 4th Int. Wheat Genet. Symp., Columbia, Missouri, pp. 225–231.Google Scholar
  20. Hart, G. E. (1970). Evidence for triplicate genes for alcohol dehydrogenase in hexaploid wheat. Proc. Natl. Acad. Sci. USA 66: 1136–1141.PubMedCrossRefGoogle Scholar
  21. Johnson, R. and Kimber, G. (1967). Homoeologous pairing of a chromosome from Agropyron elongatum with those of Triticum aestivum and Aegilops speltoides. Genet. Res. Camb. 10: 63–71.CrossRefGoogle Scholar
  22. Kimber, G. (1961). Basis of the diploid–like meiotic behaviour of polyploid cotton. Nature 191: 98–100.CrossRefGoogle Scholar
  23. Kimber, G. (1971). The design of a method, using ionising radiation, for the introduction of alien variation into wheat. Indian J. Genet. Plant Breed. 31: 580–584.Google Scholar
  24. Kimber, G. (1973a). The relationships of the S-genome diploids to polyploid wheats. Proc. 4th Int. Wheat Genet. Symp., Columbia, Missouri, pp. 81–85.Google Scholar
  25. Kimber, G. (1973b) A reassessment of the origin of the polyploid wheats. Genetics 78: 487–492.Google Scholar
  26. Kimber, G. and Athwal, R. S. (1972). A reassessment of the course of evolution in wheat. Proc. Natl. Acad. Sci. USA 69: 912–915.PubMedCrossRefGoogle Scholar
  27. Law, C. N. and Worland, A. J. (1972). Aneuploidy in wheat and its uses in genetic analysis. Annu. Rep. Plant Breed. Inst. Camb. 25–65.Google Scholar
  28. Lee, Y. H., Larter, E. N., and Evans, L. E. (1969). Homoeologous relationship of rye chromosome VI with two homoeologous groups from wheat. Can. J. Genet. Cytol. 11: 803–809.Google Scholar
  29. Linde–Laursen, I. and Larsen, J. (1974). The use of double-monotelodisomics to identify translocations in Triticum aestivum. Hereditas 78: 245–250.CrossRefGoogle Scholar
  30. Maan, S. S. and Lucken, K. A. (1966). Development and use of an aneuploid set of male sterile Chinese Spring wheat in Triticum timopheevii Zhuk. cytoplasm. Can. J. Genet. Cytol. 8: 398–403.Google Scholar
  31. Macer, R. C. F. (1966). The formal and monosomic genetic analysis of stripe rust resistance in wheat. Proc. 2nd Int. Wheat Genet. Symp., Lund Hereditas [Suppl.] 2: 127–142.Google Scholar
  32. May, C. E., Vickery, R. S., and Driscoll, C. J. (1973). Gene control in hexaploid wheat. Proc. 4th Int. Wheat Genet. Symp., Columbia, Missouri pp. 843–849.Google Scholar
  33. McIntosh, R. A. (1973). A catalogue of gene symbols for wheat. Proc. 4th Mt. Wheat Genet. Symp., Columbia, Missouri, pp. 893–937.Google Scholar
  34. Mello–Sampayo, T. and Canas, A. P. (1973). Suppressors of meiotic chromosome pairing in common wheat. Proc. 4th Int. Wheat Genet. Symp., Columbia, Missouri, pp. 709–713.Google Scholar
  35. Mettin, D., Bliithner, W. D., and Schlegel, G. (1973). Additional evidence on spontaneous 1B/1R wheat–rye substitutions and translocations. Proc. 4th Int. Wheat Genet. Symp., Columbia, Missouri, pp. 179–184.Google Scholar
  36. Morris, R. (1975). Chromosomal locations of genes for wheat characters. Wheat Newsl. XXI: 34–45.Google Scholar
  37. Okamoto, M. (1957). Asynaptic effect of chromosome V. Wheat Inf. Serv. 5: 6–7.Google Scholar
  38. Okamoto, M. (1962). Identification of the chromosomes of common wheat belonging to the A and B genomes. Can. J. Genet. Cytol. 4: 31–37.Google Scholar
  39. Riley, R. (1965). Cytogenetics and plant breeding. Genetics Today. Proc. XI Int. Congr. Genet. 3: 681–688.Google Scholar
  40. Riley, R. and Chapman, V. (1958). Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715.Google Scholar
  41. Riley, R. and Chapman, V. (1966). Estimates of the homoeology of wheat chromosomes by measurements of differential affinity at meiosis. In Chromosome Manipulations and Plant Genetics ( Riley, R. and Lewis, K. R. eds.). Olive & Boyd, London.Google Scholar
  42. Riley, R. and Kempanna, C. (1963). The homoeologous nature of the non–homologous meiotic pairing in Triticum aestivum deficient for chromosome V (5B). Heredity 18: 287–306.CrossRefGoogle Scholar
  43. Riley, R., Chapman, V., and Johnson, R. (1968). The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis. Genet. Res. 12: 199–219.CrossRefGoogle Scholar
  44. Rubenstein, J. M. and Kimber, G. (1976). The genetical relationships of the systems regulating chromosome pairing in hybrids and aneuploids of hexaploid wheat. Cereal Res. Commun. 4: 263–272.Google Scholar
  45. Sears, E. R. (1944). Cytogenetic studies with polyploid species of wheat. II. Additional chromosomal aberrations in Triticum vulgare. Genetics 29: 232–246.Google Scholar
  46. Sears, E. R. (1954). The aneuploids of common wheat. Missouri Agr. Exp. Sta. Res. Bull. 572: 59.Google Scholar
  47. Sears, E. R. (1956). The transfer of leaf–rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp. Biol. 9: 1–22.Google Scholar
  48. Sears, E. R. (1966a). Chromosome mapping with the aid of telocentrics. Proc. 2nd Int. Wheat Genet. Symp. Hereditas [Suppl.J 2: 370–380.Google Scholar
  49. Sears, E. R. (1966b). Nullisomic–tetrasomic combinations in hexaploid wheat. In Chromosome Manipulations and Plant Genetics Riley, R. and Lewis, K. R., eds.), Oliver & Boyd, London.Google Scholar
  50. Sears, E. R. (1968). Relationships of chromosomes 2A, 2B and 2D with their rye homoeologue. Proc. 3rd Int. Wheat Genet. Symp. Aust. Acad. Sci. Canberra, pp. 53–61.Google Scholar
  51. Sears, E. R. (1972). Chromosome engineering in wheat. Stadler Symp., Columbia, Missouri 4: 23–38.Google Scholar
  52. Sears, E. R. (1973). Agropyron-wheat transfers induced by homoeologous pairing. Proc. 4th Int. Wheat Genet. Symp., Columbia, Missouri, pp. 191–199.Google Scholar
  53. Sears, E. R. (1976). Genetic control of chromosome pairing in wheat. Annu. Rev. Genet. 10: 31–51.PubMedCrossRefGoogle Scholar
  54. Shepherd, K. W. (1968). Chromosomal control of endosperm proteins in wheat and rye. Proc. 3rd Int. Wheat Genet. Symp. Aust. Acad. Sci., Canberra, pp. 86–96.Google Scholar
  55. Waines, J. G. (1973). Chromosomal location of genes controlling endosperm protein production in Triticum aestivum CV. Chinese Spring. Proc. 4th Int. Wheat Genet. Symp., Columbia, Missouri, pp. 873–877.Google Scholar
  56. Wall, A. M., Riley, R., and Gale, M. D. (1971). The position of a locus on chromosome 513 of Triticum aestivum affecting homoeologous meiotic pairing. Genet. Res. Camb. 18: 329–339.CrossRefGoogle Scholar
  57. Williams, N. D. and Maan, S. S. (1973). Telosomic mapping of genes for resistance to stem rust of wheat. Proc. 4th Int. Wheat Genet. Symp. Columbia, Missouri, pp. 765–770.Google Scholar
  58. Zeller, F. J. (1973). 1B/1R wheat–rye chromosome substitutions and translocations. Proc. 4th Int. Wheat Genet. Symp., Columbia, Missouri, pp. 209–221.Google Scholar
  59. Zeller, F. J. and Baier, A. C. (1973). Substitution des Weizen–chromosomenpaares 4A durch das Roggenchromosomenpaar 5R in den Weihenstephaner Weizenstamm W70a86 (Blaukorn). Z. Pflanzenzüchtg. 70: 1–10.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • G. Kimber
    • 1
  1. 1.Department of AgronomyUniversity of MissouriColumbiaUSA

Personalised recommendations