Genetics of Food Crop Improvement

  • Dale D. Harpstead
  • M. W. Adams
  • Federico R. Poey
Part of the Basic Life Sciences book series (BLSC, volume 7)


Man’s food-procuring habits underwent a change about ten thousand years ago when he began to select plants for food. He thus initiated the engineering of his food supply and laid the foundation for crop cultivation. His dependence on wild plants and hunted animals decreased as cultivated plants became a more dependable source of food. Through the cultivation of crops more people could live together in mutual support. The interdependent community was formed. Man had invented civilization.


Food Crop Lysine Content Staple Food Crop High Lysine World Collection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allard, R. W., 1960, Principles of plant breeding, John Wiley & Sons, New York, 485 pp.Google Scholar
  2. 2.
    Redden, R. J., and Jensen, N. F., 1974, Mass selection and mating systems in cereals, Crop Sci. 14: 345–355.CrossRefGoogle Scholar
  3. 3.
    Comstock, R. E., Robinson, H. F., and Harvey, P. H., 1949, A breeding procedure designed to make maximum use of both general and specific combining ability, Agron. J. 41: 360–367.CrossRefGoogle Scholar
  4. 4.
    Hanauer, A. R., 1967, Development of single-cross hybrids from two-eared maize populations, Crop Sci 7: 192–195.CrossRefGoogle Scholar
  5. 5.
    Ehdaie, B., and Cress, C. E., 1973, Simulation of cyclic single cross section, Theor. Appi Genet. 43: 374.CrossRefGoogle Scholar
  6. 6.
    Grafius, J. E., 1965, A geometry of plant breeding, Res. Bull. No. 7, Mich. A.E.S.Google Scholar
  7. 7.
    Adams, M. W., 1967, Basis of yield component compensation in crop plants with special reference to the field bean, Phaseolus vulgaris, Crop. Sci 7: 505–510.CrossRefGoogle Scholar
  8. 8.
    Adams, M. W., 1973, Potentials of field beans and other food legumes in Latin America, Proceedings of a seminar sponsored by CIAT, Cali, Colombia, pp. 266–278.Google Scholar
  9. 9.
    Black, C. C., Jr., 1973, Photosynthetic carbon fixation in relation to net CO2 uptake, Annu. Rev. PlantPhysiol 24: 253–286.CrossRefGoogle Scholar
  10. 10.
    Kreidemann, P. E., 1971, Crop energetics and horticulture, Hortic. Sci 6: 432–438.Google Scholar
  11. 11.
    Evans, L. T., 1972, Storage Capacity as a Limitation on Grain Yield, International Rice Research Institute, Rice Breeding Annual Report, pp. 499–511.Google Scholar
  12. 12.
    Ogren, W. L., 1974, Paper prepared for FAO/TAC working group seminar on grain legumes, ICRISAT, Hyderabad, India.Google Scholar
  13. 13.
    Gorsline, G. W., Thomas, W. I., and Baker, D. E., 1964, Inheritance of P, K, Mg., Cu, B, Zn, Mn, Al and Fe concentrations by corn (Zea mays L.) leaves and grain, Crop Sci 4: 207–210.CrossRefGoogle Scholar
  14. 14.
    Foot, B. D., and Howell, R. W., 1964, Phosphorus tolerance and sensitivity of soybeans as related to uptake and translocation, Plant Physiol. 39: 610–613.CrossRefGoogle Scholar
  15. 15.
    Poison, D. E., 1968, Physiological-Genetic Investigations of the Differential Response of Navy Beans (Phaseolus vulgaris L.) to Low and High Zinc, Library, Michigan State University, East Lansing, Mich.Google Scholar
  16. 16.
    Hopkins, C. G., 1899, Improvement in the chemical composition of the corn kernel, Ill. Exp. Sta. Bull. 55: 205–240.Google Scholar
  17. 17.
    Woodworth, C. M., Leng, E. R., and Jugenheimer, R. W., 1952, Fifty generations of selection for protein and oil in corn, Agron. J. 44: 60–65.CrossRefGoogle Scholar
  18. 18.
    Showalter, M. F., and Can, R. H., 1922, Characteristic proteins in high-and low-protein corn, J. Am. Chem. Soc. 44: 2019–2023.CrossRefGoogle Scholar
  19. 19.
    Osborne, T. B., 1924, The vegetable proteins, Longmans, Green and Co., New York.Google Scholar
  20. 20.
    Frey, K. J., 1951, The interrelationships of proteins and amino acids in corn, Cereal Chem. 28: 123–132.Google Scholar
  21. 21.
    Willcox, O. W., 1949, Keys to abundance, Better Crops Plant Food 33 (4): 9–15 and 46–48.Google Scholar
  22. 22.
    Willcox, O. W., 1954, Quantitative agrobiology: I. The inverse yield law, Agron. J. 46: 315–320.CrossRefGoogle Scholar
  23. 23.
    Black, C. A., and Kempthorne, 0., 1954, Willcox’s agrobiology: I. Theory of nitrogen constant 318, Agron. J. 46: 303–307.CrossRefGoogle Scholar
  24. 24.
    Black, C. A., and Kempthorne, 0., 1954, Willcox’s agrobiology: II. Application of the nitrogen constant 318, Agron. J. 46: 307–310.CrossRefGoogle Scholar
  25. 25.
    White, W. C., and Black, C. A., 1954, Willcox’s agrobiology: III. The inverse yield-nitrogen law, Agron. J. 46: 310–315.CrossRefGoogle Scholar
  26. 26.
    Frey, K. J., 1973, Improvement of Quantity and Quality of Cereal Grain Protein; Alternate Sources of Protein for Animal Production, National Academy of Sciences, pp. 9–41.Google Scholar
  27. 27.
    Mertz, E. T., Bates, L. S., and Nelson, O. E., 1964, Mutant gene that changes protein composition and increases lysine content of maize endosperm, Science 145: 279280.Google Scholar
  28. 28.
    Nelson, O. E., Mertz, E. T., and Bates, L. S., 1965, Second mutant gene affecting the amino acid pattern of maize endosperm proteins, Science 150: 1469–1470.CrossRefGoogle Scholar
  29. 29.
    Nelson, O. E., 1969, Genetic modification of protein quality in plants, Adv. Agron. 21: 171–194.CrossRefGoogle Scholar
  30. 30.
    Osborne, T. B., and Mendel, L. B., 1964, Nutritive properties of proteins of the maize kernel, J. BioL Chem. 18: 1–16.Google Scholar
  31. 31.
    Jimenez, J. R., 1966, Protein fractionation studies of high lysine corn, in: Proceedings of the High Lysine Corn Conference, June 21–22, Purdue University, Lafayette, Indiana (1966), E. T. Mertz and O. E. Nelson (eds.), Corn Industries Research Foundation; A division of Corn Refiners Association, Inc., 1001 Connecticut Avenue, N.W., Washington, D.C., pp. 74–79.Google Scholar
  32. 32.
    Mertz, E. T., Vernon, O. A., Bates, L. S., and Nelson, O. E., 1965, Growth of rats fed on opaque-2 maize, Science 148: 1741–1742.CrossRefGoogle Scholar
  33. 33.
    Pickett, R. A., 1966, Opaque-2 corn in swine nutrition, in: Proceedings of the High Lysine Corn Conference, June 21–22, Purdue University, Lafayette, Indiana (1966), E. T. Mertz and O. E. Nelson (eds.), Corn Industries Research Foundation; A division of Corn Refiners Association, Inc., 1001 Connecticut Avenue, N.W., Washington, D.C., pp. 19–22.Google Scholar
  34. 34.
    Bressani, R., 1966, Protein quality of opaque-2 maize in children, in: Proceedings of the High Lysine Corn Conference, June 21–22, Purdue University, Lafayette, Indiana (1966), E. T. Mertz and O. E. Nelson (eds.), Corn Industries Research Foundation; A division of Corn Refiners Association, Inc., 1001 Connecticut Avenue, N.W., Washington, D.C., pp. 34–39.Google Scholar
  35. 35.
    Pradilla, A., Harpstead, D. D., Linares, F., Sarria, D., and Tripathy, K., 1969, Ensayos analiticos y biologicas de la proteina del maiz modificado por el gene opaco-2, Antioquia Med. 19 (3): 201–211.Google Scholar
  36. 36.
    Harpstead, D. D., 1971, High-lysine corn, Sci Am. 225 (2): 34–42.CrossRefGoogle Scholar
  37. 37.
    Bressani, R., Braham, J. E., and Behar, M., 1972, (eds.), Nutritional improvement of maize, Proceedings of an International Conference held at the Institute of Nutrition of Central America and Panama (INCAP), Guatemala City, March 6–8 (1972), Audiovisual Aids Section of INCAP, Guatemala City, Guatemala, C.A., 317 pp.Google Scholar
  38. 38.
    Hagberg, A., and Karlsson, K. E., 1969, New approaches to breeding for improved plant protein, International Atomic Energy Agency, Vienna, Austria, pp. 17–21.Google Scholar
  39. 39.
    Munck, L., 1972, Improvement of nutritional value in cereals, Hereditas 72: 1–128.CrossRefGoogle Scholar
  40. 40.
    Collins, F. C., and Pickett, R. C., 1972, Combining ability for grain yield, percent protein, and g Lysine/100 g protein in a nine-parent diallel of sorghum bicolor (L.) Moench, Crop. Sci. 12: 423–425.CrossRefGoogle Scholar
  41. 41.
    Verupaksha, T. K., and Sastry, L. V. S., 1968, Studies on the protein content and amino acid composition of some varieties of grain sorghum, Agric. Food Chem. 16: 199–203.CrossRefGoogle Scholar
  42. 42.
    Singh, R., and Axtell, J. D., 1973, High lysine mutant gene (hl) that improves protein quality and biological value of grain sorghum, Crop. Sci. 13: 535–539.CrossRefGoogle Scholar
  43. 43.
    Hegsted, D. M., Trulson, M. F., and Stare, F. J., 1954, Role of wheat and wheat products in human nutrition, Physiol. Rev. 34: 221–258.Google Scholar
  44. 44.
    Johnson, V. A., Mattem, P. J., and Schmidt, J. W., 1972, in: Symposium: Seed proteins, G. E. Inglett (ed.), Avi Publishing Co., Westport, Connecticut, pp. 126–135.Google Scholar
  45. 45.
    Juliano, B. 0., 1972, in: Symposium: Seed proteins, G. E. Inglett (ed.), Avi Publishing Co., Westport Connecticut, pp. 114–125.Google Scholar
  46. 46.
    Hulse, J., and Laing, E. M., 1974, Nutritive value of triticale protein, International Development Research Center, Ottawa, Canada, 184 pp.Google Scholar
  47. 47.
    Single, L., Wilson, C. M., and Hadley, H. H., 1969, Genetic differences in soybean trypsin inhibitors separated by disc electrophoresis, Crop. Sci 9: 489–491.CrossRefGoogle Scholar
  48. 48.
    Clark, R. W., Mies, D. W., and Hymowitz, T., 1970, Distribution of a trypsin inhibitor variant in seed proteins of soybean varieties, Crop. Sci 10: 486–487.CrossRefGoogle Scholar
  49. 1.
    Eberhart, S. A., and Russell, W. A., 1966, Stability parameters for comparing varieties, Crop Sci. 6: 36–40.CrossRefGoogle Scholar
  50. 2.
    Márquez Sanchez, F., 1974, El Problema de la Interacción Genético-Ambiental en Genotecnia Vegetal, Patena, A.C., Chapingo, México.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Dale D. Harpstead
    • 1
  • M. W. Adams
    • 1
  • Federico R. Poey
    • 2
  1. 1.Department of Crop and Soil SciencesMichigan State UniversityEast LansingUSA
  2. 2.Semillas Poey, S.A.México, D.F.Mexico

Personalised recommendations