Advertisement

Potential of Cell and Tissue Culture Techniques as Aids in Economic Plant Improvement

  • Louis G. Nickell
  • Don J Heinz
Part of the Basic Life Sciences book series (BLSC, volume 2)

Abstract

There are many ways to increase the genetic base of a population for effective selection. Sexual reproduction is nature’s own way of broadening this base. It is the most effective way, but not the only tool available to the breeder. There are ways of bypassing sex. Among these are the use of induced mutations and manipulations at the cellular level. At least six ways are being studied for potential use in manipulating plant systems at the cellular level in order to use them in “asexual plant improvement.” These six approaches are (a) variation in cell and tissue culture, polyploidy, aneuploidy, and chromosomal mosaics; (b) induced mutations; (c) induced polyploidy; (d) haploid plants from pollen; (e) fusion of vegetative cells (intraspecific, interspecific, intergeneric, interfamilial); and (f) transformation. Although the potential of cell and tissue culture for crop improvement could be enormous, caution in being too optimistic prematurely is stressed.

Keywords

Chromosome Number Anther Culture Plant Tissue Culture Callus Tissue Haploid Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abo El-Nil, M. M., and Hildebrandt, A. C. (1971). Induction of geranium plants from anther callus. In Vitro 7: 399.Google Scholar
  2. 2.
    Aneja, S., and Atal, C. K. (1969). Plantlet formation in tissue cultures from lignotubers of Eucalyptus citriodora Hook. Curr. Sci. (India) 38: 69.Google Scholar
  3. 3.
    Bala Bawa, S., and Torrey, J. G. (1971). “Budding” and nuclear division in cultured protoplasts of corn, Convolvulus, and onion. Bot. Gaz. 132:240–245.Google Scholar
  4. 4.
    Barba, R., and Nickell, L. G. (1969). Nutrition and organ differentiation in tissue cultures of sugarcane, a monocotyledon. Planta 89: 299–302.CrossRefGoogle Scholar
  5. 5.
    Boulware, M. A., and Camper, N. D. (1972). Effects of selected herbicides on plant protoplasts. Physiol. Plant 26: 313–317.CrossRefGoogle Scholar
  6. 6.
    Braun, A. C. (1959). A demonstration of the recovery of the crown-gall tumor cell with the use of complex tumors of single-cell origin. Proc. Natl. Acad. Sci. (USA) 45: 932–938.CrossRefGoogle Scholar
  7. 7.
    Bremer, G. (1964). Some historical facts about cytological investigations of sugarcane. Ind. J. Sugarcane Res. Develop. 7: 122–130.Google Scholar
  8. 8.
    Byther, R. S., Steiner, G. W., and Wismer, C. A. (1971). Smut found in Hawaii. Annual Report, Experiment Station, Hawaiian Sugar Planters’ Association, pp. 37–39.Google Scholar
  9. 9.
    Carlson, P. S. (1970). Induction and isolation of auxotrophic mutants in somatic cell cultures of Nicotiana tabacum. Science 168: 487–489.Google Scholar
  10. 10.
    Carlson, P. S., Smith, H. H., and Dearing, R. D. (1972). Parasexual interspecific plant hybridization. Proc. Natl. Acad. Sci. (USA) 69: 2292–2294.CrossRefGoogle Scholar
  11. 11.
    Chupeau, Y., and Morel, G. (1970). Obtention de protoplastes de plantes supérieures à partir de tissus cultures in vitro. Compt. Rend. Acad. Sci. (Paris) 270: 2659–2662.Google Scholar
  12. 12.
    Clapham, D. (1971). In vitro development of callus from pollen of Lolium and Hordeum. Z. Pflanzenzüchtg. 65: 285–292.Google Scholar
  13. 13.
    Cocking, E. C. (1960). A method for the isolation of plant protoplasts and vacuoles. Nature 187: 927–929.CrossRefGoogle Scholar
  14. 14.
    Coleman, R. E. (1970). New plants produced from callus tissue culture. Sugarcane Research 1970 Report, ARS, USDA, p. 38.Google Scholar
  15. 15.
    de Torok, D., and White, P. R. (1960). Cytological instability in tumors of Picea glauca. Science 131: 730–732.CrossRefGoogle Scholar
  16. 16.
    Eigsti, O. J., and Dustin, P. (1955). Colchicine in Agriculture, Medicine, Biology and Chemistry, Iowa State College Press, Ames, la.Google Scholar
  17. 17.
    Eriksson, T. (1965). Studies on the growth requirements and growth measurements of cell cultures of Haplopappus gracilis. Physiol. Plant. 18: 976–993.CrossRefGoogle Scholar
  18. 18.
    Eriksson, T. (1971). Isolation and fusion of plant protoplasts. In: Les Cultures de Tissus de Plantes, Coll. Internat. CNRS No. 193 (1970), Strasbourg, pp. 297–302.Google Scholar
  19. 19.
    Eriksson, T., and Jonasson, K. (1969). Nuclear division in isolated protoplasts from cells of higher plants grown in vitro. Planta 89: 85–89.CrossRefGoogle Scholar
  20. 20.
    Fodil, Y., Esnault, R., and Trapy, G. (1971). Fusion de protoplastes de coléoptiles d’Avoine. Compt. Rend. Acad. Sci. (Paris) 273: 727–729.Google Scholar
  21. 21.
    Gautheret, R. J. (1948). Sur la culture indéfinie des tissus de Salix caprea. Compt. Rend. Soc. Biol. (Paris) 142: 807.Google Scholar
  22. 22.
    Gautheret, R. J. (1959). La Culture des Tissus Végétaux, Masson & Cie, Paris.Google Scholar
  23. 23.
    Gioelli, F. (1938). Morfologia, istologia, fisiologia e fisiopathologia di meristemi secondari in vitro. Att. Acad. Sci. Ferrara 16: 1–87.Google Scholar
  24. 24.
    Gomez-Pompa, A., Vazguez-Yanes, C., and Guevara, S. (1972). The tropical rain forest: A nonrenewable resource. Science 177: 762–765.PubMedCrossRefGoogle Scholar
  25. 25.
    Grambow, H. J., Kao, K. N., Miller, R. A., and Gamborg, O. L. (1972). Cell division and plant development from protoplasts of carrot cell suspension cultures. Planta 103: 348–355.CrossRefGoogle Scholar
  26. 26.
    Grassi, C. O. (1966). Comments. ISSCT Sugarcane Breeders’ Newsletter 18: 29–30.Google Scholar
  27. 27.
    Gregory, D. W., and Cocking, E. C. (1965). The large-scale isolation of protoplasts from immature tomato fruit. J. Cell Biol. 24: 143–146.PubMedCrossRefGoogle Scholar
  28. 28.
    Gregory, D. W., and Cocking, E. C. (1966). Studies on isolated protoplasts and vacuoles. I. General properties. J. Exptl. Bot. 17: 57–67.CrossRefGoogle Scholar
  29. 29.
    Gresshoff, P. M., and Doy, C. H. (1972). Haploid Arabidopsis thaliana callus and plants from anther culture. Austral. J. Biol. Sci. 25: 259–264.Google Scholar
  30. 30.
    Guha, S., and Maheshwari, S. C. (1964). In vitro production of embryos from anthers of Datura. Nature 204: 497.CrossRefGoogle Scholar
  31. 31.
    Guha, S., and Maheshwari, S. C. (1966). Cell division and differentiation of embryos in the pollen grains of Datura in vitro. Nature 212: 97–98.CrossRefGoogle Scholar
  32. 32.
    Guha, S., and Maheshwari, S. C. (1967). Development of embryoids from pollen grains of Datura in vitro. Phytomorphology 17: 454–461.Google Scholar
  33. 33.
    Heinz, D. J (1971). New procedures for sugarcane breeders. Proc. Internat. Soc. Sugar Cane Technol. 14: 372–380.Google Scholar
  34. 34.
    Heinz, D. J (1972). Sugarcane improvement through induced mutations using vegetative propagules and cell culture techniques. GAO/IAEA Panel on Mutation Breeding of Vegetatively Propagated and Perennial Crops (in press).Google Scholar
  35. 35.
    Heinz, D. J, and Mee, G. W. P. (1970). Colchicine-induced polyploids from cell suspension cultures of sugarcane. Crop Sci. 10: 696–699.CrossRefGoogle Scholar
  36. 36.
    Heinz, D. J, and Mee, G. W. P. (1971). Morphologic, cytogenetic, and enzymatic variation in Saccharum species hybrid clones derived from callus tissue. Am. J. Bot. 58: 257–262.CrossRefGoogle Scholar
  37. 37.
    Heinz, D. J, Mee, G. W. P., and Nickell, L. G. (1969). Chromosome numbers of some Saccharum species hybrids and their cell suspension cultures. Am. J. Bot. 56: 450–456.CrossRefGoogle Scholar
  38. 38.
    Hellmann, S., and Reinert, J. (1971). Protoplasten aus Zellkulturen von Daucus carota. Protoplasma 72: 479–484.CrossRefGoogle Scholar
  39. 39.
    Hess, D. (1969). Versuche zur Transformation an höheren Pflanzen: Induktion und konstante Weitergabe der Anthocyansynthese bei Petunia hybrida. Z. Pflanzenphysiol. 60: 348–358.Google Scholar
  40. 40.
    Hess, D. (1969). Versuche zur Transformation an höheren Pflanzen: Wiederholung der Anthocyan-Induktion bei Petunia und erste Charakterisierung des transformierenden Prinzips. Z. Pflanzenphysiol. 61: 286–298.Google Scholar
  41. 41.
    Hess, D. (1970). Versuche zur Transformation an höheren Pflanzen: Genetische Charakterisierung einiger mutmasslich transformierter Pflanzen. Z. Pflanzenphysiol. 63: 31–43.Google Scholar
  42. 42.
    Hess, D. (1970). Versuche zur Transformation an höheren Pflanzen: Mögliche Transplantation eines Gens für Blattform bei Petunia hybrida. Z. Pflanzenphysiol. 63: 461–467.Google Scholar
  43. 43.
    Hess, D. (1970). Molekulare Genetik bei höheren Pflanzen. Ber. Deutsch. Bot. Ges. 83: 279–300.Google Scholar
  44. 44.
    Hess, D. (1971). Beseitigung der transformierenden Aktivität durch DNase. Naturwissenschaften 58: 366.Google Scholar
  45. 45.
    Hess, D. (1972). Versuche zur Transformation an höheren Pflanzen: Nachweis von Heterozygoten in Versuchen zur Transplantation von Genen für Anthocyansynthese bei Petunia hybrida. Z. Pflanzenphysiol. 66: 155–166.Google Scholar
  46. 46.
    Horak, J., Landa, Z., and Lustinec, J. (1971). Production of polyploid plants from tissue cultures of Brassica oleracea L. Phyton 28: 7–10.Google Scholar
  47. 47.
    Jacquiot, C. (1947). Effect inhibiteur des tannins sur le dévelopment des cultures in vitro du cambium de certains arbres fruitiers. Comet. Rend. Acad. Sci (Paris) 225: 434–436.Google Scholar
  48. 48.
    Jacquiot, C. (1949). Observations sur la néoformation de bourgeons chez le tissu cambial d’Ulmus campestris cultivés in vitro. Compt. Rend. Acad. Sci. (Paris) 229: 529–530.Google Scholar
  49. 49.
    Jacquiot, C. (1950). Sur la culture in vitro de tissu cambial de Châtaignier (Castanea vesca Gaertn.). Compt. Rend. Acad. Sci. (Paris) 231: 1080–1081.Google Scholar
  50. 50.
    Jagathesan, D. (1966). Comments. ISSCT Sugarcane Breeders’ Newsletter 18: 30–31.Google Scholar
  51. 51.
    Kameya, T., and Hinata, K. (1970). Induction of haploid plants from pollen grains of Brassica. Japan. J. Breeding 20: 82–87.Google Scholar
  52. 52.
    Kameya, T., and Takahashi, N. (1972). The effects of inorganic salts on fusion of protoplasts from roots and leaves of Brassica species. Japan. J. Genet. 47: 215–217.CrossRefGoogle Scholar
  53. 53.
    Kameya, T., and Uchimiya, H. (1972). Embryoids derived from isolated protoplasts of carrot. Planta 103: 356–360.CrossRefGoogle Scholar
  54. 54.
    Kao, K. N., Keller, W. A., and Miller, R. A. (1970). Cell division in newly formed cells from protoplasts of soybean. Exptl. Cell Res. 62: 338–340.PubMedCrossRefGoogle Scholar
  55. 55.
    Kao, K. N., Gamborg, O. L., Miller, R. A., and Keller, W. A. (1971). Cell divisions in cells regenerated from protoplasts of soybean and Haplopappus gracilis. Nature New Biol. 232: 124.CrossRefGoogle Scholar
  56. 56.
    Katayama, Y., and Tanaka, M. (1969). Studies on the haploidy in relation to plant breeding. V. Further proposal of haploid method in plant breeding. Zeiken Ziho. 21: 37–44.Google Scholar
  57. 57.
    Keller, W. A., Harvey, B., Gamborg, O. L., Miller, R. A., and Eveleigh, D. E. (1970). Plant protoplasts for use in somatic cell hybridization. Nature 226: 280–282.PubMedCrossRefGoogle Scholar
  58. 58.
    Maretzki, A. (1970). Success in preparing sugarcane protoplasts. Annual Report, Experiment Station, Hawaiian Sugar Planters’ Association, pp. 64–65.Google Scholar
  59. 59.
    Maretzki, A., and Nickell, L. G. (1973). Formation of protoplasts from sugarcane cell suspensions and the regeneration of cell cultures from protoplasts. In: Protoplastes et Fusion de Cellules Somatiques Vegetales. Coll. internat. CNRS No. 212 (1972), Versailles, pp. 51–63.Google Scholar
  60. 60.
    Mathes, M. C. (1964). The in vitro formation of plantlets from isolated aspen tissue. Phyton 21: 137–144.Google Scholar
  61. 61.
    Mee, G. W. P., Nickell, L. G., and Heinz, D. J (1969). Chemical mutagens-Their effects on cells in suspension culture. Annual Report, Experiment Station, Hawaiian Sugar Planters’ Association, pp. 7–8.Google Scholar
  62. 62.
    Miller, R. A., Gamborg, O. L., Keller, W. A., and Kao, K. N. (1971). Fusion and division of nuclei in multinucleated soybean protoplasts. Can. J. Genet. Cytol. 13: 347–353.Google Scholar
  63. 63.
    Mitra, J., and Steward, F. C. (1961). Growth induction in cultures of Haplopappus gracilis. II. The behavior of the nucleus. Am. J. Bot. 48: 359–368.CrossRefGoogle Scholar
  64. 64.
    Mitra, J., Mapes, M., and Steward, F. C. (1960). Growth and organized development of cultured cells. IV. The behavior of the nucleus. Am. J. Bot. 47: 357–368.CrossRefGoogle Scholar
  65. 65.
    Morel, G. (1946). Action de l’acide pantothénique sur la croissance des tissus d’Aubépine cultives in vitro. Compt. Rend. Acad. ScL (Paris) 223: 166–168.Google Scholar
  66. 66.
    Motoyoshi, F. (1971). Protoplasts isolated from callus cells of maize endosperm. Exptl. Cell Res. 68: 452–456.PubMedCrossRefGoogle Scholar
  67. 67.
    Muir, W. H., Hildebrandt, A. C., and Riker, A. J. (1954). Plant tissue cultures produced from single isolated cells. Science 119: 877–878.CrossRefGoogle Scholar
  68. 68.
    Murashige, T., and Nakano, R. (1966). Tissue culture as a potential tool in obtaining polyploid plants. J. Hered. 57: 115–118.Google Scholar
  69. 69.
    Nagata, T., and Takebe, I. (1970). Cell wall regeneration and cell division in isolated tobacco mesophyll protoplasts. Planta 92: 301–308.CrossRefGoogle Scholar
  70. 70.
    Nagata, T., and Takebe, I. (1971). Plating of isolated tobacco mesophyll-protoplasts on agar medium. Planta 99: 12–20.CrossRefGoogle Scholar
  71. 71.
    Nagata, K., and Tanaka, M. (1968). Differentiation of embryoids from developing germ cells in anther culture of tobacco. Japan. J. Genet. 43: 65–71.CrossRefGoogle Scholar
  72. 72.
    Nickell, L. G., and Torrey, J. G. (1969). Crop improvement through plant cell and tissue culture. Science 166: 1068–1069.PubMedCrossRefGoogle Scholar
  73. 73.
    Nickell, L. G., Maretzki, A., Higa, A., and Richards, G. M. (1971). Transformation attempts. Annual Report, Experiment Station, Hawaiian Sugar Planters’ Association, pp. 33–34.Google Scholar
  74. 74.
    Niizeki, H., and Oono, K. (1968). Induction of haploid rice plants from anther culture. Proc. Japan. Acad. 44: 554–557.Google Scholar
  75. 75.
    Nitsch, J. P., and Nitsch, C. (1969). Haplöid plants from pollen grains. Science 163: 85–87.PubMedCrossRefGoogle Scholar
  76. 76.
    Nitsch, J. P., Nitsch, C., and Pereau-Leroy, P. (1969). Obtention de mutants à partir de Nicotiana haploides issus de grains de pollen. Compt. Rend. Acad. Sci. (Paris) 269: 1650–1652.Google Scholar
  77. 77.
    Norstog, K. J. (1956). Growth of rye-grass endosperm in vitro. Bot. Gaz. 117: 253–259.CrossRefGoogle Scholar
  78. 78.
    Ohyama, K., and Nitsch, J. P. (1972). Flowering haploid plants obtained from protoplasts of tobacco leaves. Plant Cell PhysioL 13: 229–236.Google Scholar
  79. 79.
    Otsuki, Y., and Takebe, I. (1969). Isolation of intact mesophyll cells and their protoplasts from higher plants. Plant Cell Physiol. 10: 917–921.Google Scholar
  80. 80.
    Partanen, C. R. (1963). Plant tissue culture in relation to developmental cytology. Internat. Rev. Cytol. 15: 215–243.CrossRefGoogle Scholar
  81. 81.
    Partanen, C. R. (1965). Cytological behavior of plant tissues in vitro as a reflection of potentialities in vivo. In White, D. R., and Grove, A. R. (eds.), Proceedings of the International Conference on Plant Tissue Culture, McCutchan, Berkeley, Calif.Google Scholar
  82. 82.
    Pelletier, G., Raquin, C., and Simon, G. (1972). La culture in vitro d’anthéres d’Asperge (Asparagus officinalis). Compt. Rend. Acad. Sci. (Paris) 274: 848–851.Google Scholar
  83. 83.
    Phillips, A. Y. (1967). Colchicine treatment of noble canes. Thirty-fourth Annual Report BWI Central Cane Breeding Station, pp. 12–14.Google Scholar
  84. 84.
    Potrykus, I. (1971). Intra and interspecific fusion of protoplasts from petals of Torenia baillonii and Torenia fournieri. Nature New Biol. 231: 57–58.PubMedCrossRefGoogle Scholar
  85. 85.
    Power, J. B., and Cocking, E. C. (1970). Isolation of leaf protoplasts: Macromolecule uptake and growth substance response. J. Exptl. Bot. 21: 64–70.CrossRefGoogle Scholar
  86. 86.
    Power, J. B., Cummins, S. E., and Cocking, E. C. (1970). Fusion of isolated plant protoplasts. Nature 225: 1016–1018.PubMedCrossRefGoogle Scholar
  87. 87.
    Raj, B., and Herr, J. M. (1970). The isolation of protoplasts from the placental cells of Solanum nigrum L. Protoplasma 69: 291–300.CrossRefGoogle Scholar
  88. 88.
    Reinert, J., and Hellmann, S. (1971). Mechanism of the formation of polynuclear protoplasts from cells of higher plants. Naturwissenschaften 58: 419.CrossRefGoogle Scholar
  89. 89.
    Ruesink, A. W. (1971). The plasma membrane of Avena coleoptile protoplasts. Plant Physiol. 47: 192–195.PubMedCrossRefGoogle Scholar
  90. 90.
    Ruesink, A. W., and Thimann, K. V. (1965). Protoplasts from the Avena coleoptile. Proc. Natl. Acad. Sci. (USA) 54: 56–64.CrossRefGoogle Scholar
  91. 91.
    Ruesink, A. W., and Thimann, K. V. (1966). Protoplasts: Preparation from higher plants. Science 154: 280–281.PubMedCrossRefGoogle Scholar
  92. 92.
    Schenk, R. U., and Hildebrandt, A. C. (1969). Production of protoplasts from plant cells in liquid culture using purified commercial cellulases. Crop Sci. 9: 629–631.CrossRefGoogle Scholar
  93. 93.
    Schmitt, C., Kopp, M., and Hirth, L. (1971). Aptitude de diverses souches de tissus de plantes cultivés in vitro A donner des protoplastes. Compt. Rend. Acad. Sci. (Paris) 272: 2447–2450.Google Scholar
  94. 94.
    Sharp, W. R., Raskin, R. S., and Sommer, H. E. (1972). Haploidy in Lillum. Phytomorphology (in press).Google Scholar
  95. 95.
    Sisodia, N. S. (1965). Techniques of colchicine application for chromosome doubling. Thirty-second Annual Report BWI Central Cane Breeding Station, pp. 30–31.Google Scholar
  96. 96.
    Sisodia, N. S. (1966). Colchicine for chromosome doubling. Thirty-third Annual Report BWI Central Cane Breeding Station, pp. 40–44.Google Scholar
  97. 97.
    Skoog, F. (1954). Substances involved in normal growth and differentiation of plants. Brookhaven Symp. Biol. 6: 1–21.Google Scholar
  98. 98.
    Staritsky, G. (1970). Embryoid formation in callus tissues of coffee. Acta Bot. Neerl. 19: 509–514.Google Scholar
  99. 99.
    Steiner, G. W., and Byther, R. S. (1971). Partial characterization and use of a host-specific toxin from Helminthosporium sacchari on sugarcane. Phytopathology 61: 691–695.CrossRefGoogle Scholar
  100. 100.
    Steiner, G. W., and Strobel, G. A. (1971). Helminthosporoside, a host-specific toxin from Helminthosporium sacchari. J. Biol. Chem. 246: 4350–4357.PubMedGoogle Scholar
  101. 101.
    Straus, J. (1954). Maize endosperm tissue grown in vitro. II. Morphology and cytology. Am. J. Bot. 41: 833–839.CrossRefGoogle Scholar
  102. 102.
    Sunderland, N., and Wicks, F. M. (1969). Cultivation of haploid plants from tobacco pollen. Nature 224: 1227–1229.CrossRefGoogle Scholar
  103. 103.
    Takebe, I., Labib, G., and Melchers, G. (1971). Regeneration of whole plants from isolated mesophyll protoplasts of tobacco. Naturwissenschaften 58: 318–320.CrossRefGoogle Scholar
  104. 104.
    Tanaka, M., and Nagata, K. (1969). Tobacco plants obtained by anther culture and the experiment to get diploid seeds from haploids. Japan. J. Genet. 44: 47–54.CrossRefGoogle Scholar
  105. 105.
    Torrey, J. G. (1959). Experimental modification of development in the root. In Rudnick, D. (ed.), Cell, Organism and Milieu, Ronald Press, New York, pp. 189–222.Google Scholar
  106. 106.
    Torrey, J. G. (1967). Morphogenesis in relation to chromosomal constitution in long-term plant tissue cultures. Physiol. Plant. 20: 265–275.CrossRefGoogle Scholar
  107. 107.
    Torrey, J. G., Reinert, J., and Merkel, N. (1962). Mitosis in suspension cultures of higher plant cells in a synthetic medium. Am. J. Bot. 49: 420–425.CrossRefGoogle Scholar
  108. 108.
    Tulecke, W. (1957). The pollen of Ginkgo biloba: In vitro culture and tissue formation. Am. J. Bot. 44: 602–608.CrossRefGoogle Scholar
  109. 109.
    Vreugdenhil, D. (1957). On the influence of some environmental factors on the osmotic behaviour of isolated protoplasts of Allium cepa. Acta Bot. Neerl. 6: 47254 2.Google Scholar
  110. 110.
    Winton, L. L. (1968). Plantlets from aspen tissue cultures. Science 160: 1234–1235.PubMedCrossRefGoogle Scholar
  111. 111.
    Winton, L. L. (1970). Shoot and tree production from aspen tissue cultures. Am. J. Bot. 57: 904–909.CrossRefGoogle Scholar
  112. 112.
    Winton, L. L. (1971). Tissue culture preparation of European aspen. Forest Sci. 17: 348–350.Google Scholar
  113. 113.
    Wolter, K. E. (1968). Root and shoot initiation in aspen callus cultures. Nature 219: 509–510.PubMedCrossRefGoogle Scholar
  114. 114.
    Yamada, Y., Koso, K., Sekiya, J., and Yasuda, T. (1972). Examination of the conditions for protoplast isolation from tobacco cells cultured in vitro. Agr. Biol. Chem. 36: 1055–1059.CrossRefGoogle Scholar
  115. 115.
    Zenkteler, M. (1971). In vitro production of haploid plants from pollen grains of Atropa belladonna L. Experientia (Basel) 27: 1087.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Louis G. Nickell
    • 1
  • Don J Heinz
    • 1
  1. 1.Experiment StationHawaiian Sugar Planters’ AssociationHonoluluUSA

Personalised recommendations