Genetic Regulatory Mechanisms in the Fungi

  • J. Polacco
  • S. R. Gross
Part of the Basic Life Sciences book series (BLSC, volume 2)


There are at least two interdependent signals controlling the production, by three unlinked structural genes, of the three leucine biosynthetic enzymes of Neurospora (1). Leucine represses the first enzyme, α-isopropylmalate synthetase (the synthetase), the product of the leu-4 cistron. The synthetase catalyzes the production of α-isopropylmalate (α-IPM), which is the second signal—an obligate inducer for the synthesis of α-IPM isomerase (the isomerase) and β-IPM dehydrogenase (the dehydrogenase), specified, respectively, by the leu-2 and leu-1 cistrons. Endogenous α-IPM concentrations respond inversely to endogenous leucine concentration, not only because leucine represses synthetase formation but more importantly because leucine feedback inhibits the catalytic activity of the synthetase (1, 2).


Leucine Concentration Genetic Regulatory Mechanism Amino Acid Binding Site Leucine Biosynthetic Pathway Type Wild Type 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gross, S. R. (1965). Proc. Natl. Acad. Sci. (USA) 54: 1538.CrossRefGoogle Scholar
  2. 2.
    Webster, R. E., and Gross, S. R. (1965). Biochemistry 4: 2309.CrossRefGoogle Scholar
  3. 3.
    Lester, H. E., and Gross, S. R. (1959). Science 129: 572.PubMedCrossRefGoogle Scholar
  4. 4.
    Polacco, J., and Gross, S. R. (1973). Genetics 74 (in press).Google Scholar
  5. 5.
    Wagner, R. P., et al. (1964). Genetics 49: 865.PubMedGoogle Scholar
  6. 6.
    Olshan, A., and Gross, S. R. In preparation.Google Scholar
  7. 7.
    Polacco, J. (1971). The leu-3 cistron as a genetic regulatory element for the leucine biosynthetic enzymes of Neurospora. Doctoral thesis, Duke University.Google Scholar
  8. 8.
    Burns, R. O., et al. (1966). J. Bacteriol. 91: 1570.PubMedGoogle Scholar
  9. 9.
    Margolin, P. (1963). Genetics 48: 441.PubMedGoogle Scholar
  10. 10.
    Gross, S. R. (1969). Ann. Rev. Genet. 3: 395.CrossRefGoogle Scholar
  11. 11.
    Calvo, J. M. (1969). Genetics 61: 777.PubMedGoogle Scholar
  12. 12.
    LaCroute, F. (1968). J. Bacteriol. 95: 824.PubMedGoogle Scholar
  13. 13.
    Marzluf, G. A., and Metzenberg, R. L. (1968). J. Mol. Biol. 33: 423.PubMedCrossRefGoogle Scholar
  14. 14.
    Valone, J. A., et al. (1971). Proc. Natl. Acad. Sci. (USA) 68: 1555.CrossRefGoogle Scholar
  15. 15.
    Pateman, J. A., and Cove, D. J. (1967). Nature 215: 1234.PubMedCrossRefGoogle Scholar
  16. 16.
    Douglas, H., and Hawthorne, D. C. (1966). Genetics 54: 911.PubMedGoogle Scholar
  17. Douglas H., and Hawthorne, D. C. (1972). J. Bacterio 109: 1139.Google Scholar
  18. 17.
    Englesberg, E., et al. (1969). J. Mol. Biol. 43: 281.PubMedCrossRefGoogle Scholar
  19. 18.
    Englesberg, E., et al. (1969). Proc. Natl. Acad. Sci.(USA) 62: 1100.Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • J. Polacco
    • 1
  • S. R. Gross
    • 2
  1. 1.Departamento de Ciencias Fisiológicas Sección de BioquimicaUniversidad del ValleCaliColombia
  2. 2.Division of Genetics Department of BiochemistryDuke UniversityDurhamUSA

Personalised recommendations