Advertisement

Potential Genetic Resources in Tomato Species: Clues from Observations in Native Habitats

  • Charles M. Rick
Part of the Basic Life Sciences book series (BLSC, volume 2)

Abstract

Interspecific hybridization is playing an increasingly important role in the breeding of improved cultivars of higher plants. Lycopersicon is a good example of a genus in which the cultivated species (L. esculentum Mill.) is being improved in this fashion. The advantages offered by the tomato species for this purpose are:
  1. a.

    All species can be readily grown for experimental purposes, and L. esculentum is widely cultivated under a wide range of environmental conditions.

     
  2. b.

    Excellent sources of germ plasm now exist in the wild species as well as in modern and primitive cultivars of L. esculentum.

     
  3. c.

    All of the wild species can be hybridized with L. esculentumn, albeit requiring special aids in certain combinations; fertility and viability of the hybrid generations permit the intended gene transfers. All species have 12 pairs of chromosomes, which are essentially homologous.

     
  4. d.

    The cultivated species is well known genetically; its chromosomes have been mapped cytologically and genetically; it behaves as a basic diploid (27, 28).

     

Keywords

Wild Species Ripe Fruit Lycopersicon Esculentum Crassulacean Acid Metabolism Germ Plasm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander, L. J. (1963). Transfer of a dominant type of resistance to the four known Ohio pathogenic strains of TMV from Lycopersicon peruvianum to L. esculentum. Phytopathology 53: 869.Google Scholar
  2. 2.
    Andrus, C. F., and Reynard, G. B. (1945). Resistance to Septoria leaf spot and its inheritance in tomatoes. Phytopathology 35: 16–24.Google Scholar
  3. 3.
    Bohn, G. W., and Tucker, C. M. (1940). Studies on Fusarium wilt of the tomato. I. Immunity in Lycopersicon pimpinellifolium Mill. and its inheritance in hybrids. Mis. Agr. Expt. Sta. Res. Bull. 311: 1–82.Google Scholar
  4. 4.
    Chmielewski, T. (1962). Cytological and taxonomical studies on a new tomato form. I. Genet. Polon. 3: 253–264.Google Scholar
  5. 5.
    Chmielewski, T. (1968). New dominant factor with recessive lethal effect in tomato. Genet. Polon. 9: 39–48.Google Scholar
  6. 6.
    Chimielewsld, T. (1968). Cytogenetical and taxonomical studies on a new tomato form. II. Genet. Polon. 9: 97–124.Google Scholar
  7. 7.
    Denna, D. W. (1971). The potential use of self-incompatibility for breeding F, hybrids of naturally self-pollinating vegetable crops. Euphytica 20: 542–548.Google Scholar
  8. 8.
    Downton, W. J. S. (1971). Adaptive and evolutionary aspects of C. photosynthesis. In Hatch, M. D., Osmond, G. B., and Slatyer, R. A. (eds.), Photosynthesis and Photorespiration, Symposium Proceedings, Interscience, New York, pp. 3–17.Google Scholar
  9. 9.
    Gentile, A. G., and Stoner, A. K. (1968). Resistance in Lycopersicon and Solanum species to the potato aphid. J. Econ. Entomol. 61: 1152–1154.Google Scholar
  10. 10.
    Gentile, A. G., and Stoner, A. K. (1968). Resistance in Lycopersicon spp. to the tobacco flea beetle. J. Econ. Entomol. 61: 1347–1349.Google Scholar
  11. 11.
    Gentile, A. G., Webb, R. E., and Stoner, A. K. (1968). Resistance in Lycopersicon and Solanum to greenhouse whiteflies. J. Econ. Entomol. 61: 1355–1357.Google Scholar
  12. 12.
    Gentile, A. G., Webb, R. E., and Stoner, A. K. (1969). Lycopersicon and Solanum spp. resistant to the carmine and two-spotted spider mite. J. Econ. Entomol. 62: 834–836.Google Scholar
  13. 13.
    Gilbert, J. C., and McGuire, D. C. (1956). Inheritance of resistance to severe root-knot from Meloidogyne incognita in commercial-type tomatoes. Proc. Am. Soc. Hort. Sci. 68: 437–442.Google Scholar
  14. 14.
    Hardon, J. J. (1967). Unilateral incompatibility between Solanum pennellii and Lycopersicon esculentum. Genetics 57: 795–808.PubMedGoogle Scholar
  15. 15.
    Hendrix, J. W., and Frazier, W. A. (1949). Studies on the inheritance of Stemphyllium resistance in tomatoes. Hawaii Agr. Expt. Sta. Bull. 8: 1–24.Google Scholar
  16. 16.
    Hogenboom, N. G. (1968). Self-compatibility in Lycopersicum peruvianum (L.) Mill. Euphytica 17: 220–223.Google Scholar
  17. 17.
    Hunter, J. W., Laude, H. H., and Brunson, A. M. (1936). A method for studying resistance to drought injury in inbred lines of maize. J. Am. Soc. Agron. 20: 694–698.CrossRefGoogle Scholar
  18. 18.
    Kerr, E. A., and Bailey, D. L. (1964). Resistance to Cladosporium fulvum Cke. obtained from wild species of tomato. Can. J. Bot. 42: 1541–1554.CrossRefGoogle Scholar
  19. 19.
    Martin, F. W. (1961). The inheritance of self-incompatibility in hybrids of Lycopersicon esculentum Mill. X L. chilense Dun. Genetics 46: 1443–1454.PubMedGoogle Scholar
  20. 20.
    Martin, F. W. (1963). Distribution and interrelationships of incompatibility barriers in the Lycopersicon hirsutum Humb. and Bonpi. complex. Evolution 17: 519–528.CrossRefGoogle Scholar
  21. 21.
    Martin, F. W. (1968). The behavior of Lycopersicon incompatibility alleles in an alien genetic milieu. Genetics 60: 101–109.PubMedGoogle Scholar
  22. 22.
    Mather, K. (1943). Specific differences in Petunia. I. Incompatibility. J. Genet. 45: 215–235.CrossRefGoogle Scholar
  23. 23.
    Ranson, S. L., and Thomas, M. (1960). Crassulacean acid metabolism. Ann. Rev. Plant Phys. 11: 81–110.CrossRefGoogle Scholar
  24. 24.
    Rick, C. M. (1950). Pollination relations of Lycopersicon esculentum in native and foreign regions. Evolution 4: 110–122.CrossRefGoogle Scholar
  25. 25.
    Rick, C. M. (1958). The role of natural hybridization in the derivation of cultivated tomatoes in western South America. Econ. Bot. 12: 346–367.CrossRefGoogle Scholar
  26. 26.
    Rick, C. M. (1963). Barriers to interbreeding in Lycopersicon peruvianum. Evolution 17: 216–232.CrossRefGoogle Scholar
  27. 27.
    Rick, C. M. (1971). Some cytogenetic features of the genome in diploid plant species. Stadler Symp. 2: 153–174.Google Scholar
  28. 28.
    Rick, C. M., and Khush, G. S. (1969). Cytogenetic explorations in the tomato genome. Genet. Lect. 1: 45–68.Google Scholar
  29. 29.
    Rick, C. M., and Lamm, R. (1955). Biosystematic studies on the status of Lycopersicon chilense. Am. J. Bot. 42: 663–675.CrossRefGoogle Scholar
  30. 30.
    Rick, C. M., and Smith, P. G. (1952). Novel variations in tomato species hybrids. Am. Naturalist 87: 359–373.Google Scholar
  31. 31.
    Schaible, L., Cannon, O. S., and Waddoups, V. (1951). Inheritance of resistance to Verticillium wilt in a tomato cross. Phytopathology 41: 986–990.Google Scholar
  32. 32.
    Skrdla, W. H., Alexander, L. J., Oakes, G., and Dodge, A. F. (1968). Horticultural characters and reaction to two diseases of the world collection of the genus Lycopersicon. Ohio Agr. Res. Sta. Res. Bull. 1009: 1–110.Google Scholar
  33. 33.
    Stoner, A. K., and Gentile, A. G. (1968). Resistance of Lycopersicon species to the carmine spider mite, U.S.D.A. A.R.S. Prod. Res. Rept. No. 102, pp. 1–9.Google Scholar
  34. 34.
    Stoner, A. K., and Stringfellow, T. (1967). Resistance of tomato varieties to spider mites. Proc. Am. Soc. Hort. Sci. 90: 324–329.Google Scholar
  35. 35.
    Stoner, A. K., Webb, R. E., and Gentile, A. G. (1968). Reaction of tomato varieties and breeding lines to aphids. HortScience 3: 77.Google Scholar
  36. 36.
    Tal, M. (1971). Salt tolerance in the wild relatives of the cultivated tomato: responses of Lycopersicon esculentum, L. peruvianum and L. esculentum minor to sodium chloride solution. Austral. J. Agr. Res. 22: 631–638.CrossRefGoogle Scholar
  37. 37.
    Webb, R. E., Stoner, A. K., and Gentile, A. G. (1971). Resistance to leaf miners in Lycopersicon accessions. J. Am. Soc. Hort. Sci. 96: 65–67.Google Scholar
  38. 38.
    Wiggins, I. L., and Porter, D. M. (1971). Flora of the Galhpagos Islands, Stanford University Press, Stanford, Calif., 998 pp.Google Scholar
  39. 39.
    Yu, A. T. T. (1972). The genetics and physiology of water usage in Solanum pennellii Corr. and its hybrids with Lycopersicon esculentum Mill. Ph.D. thesis, University of California, Davis.Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Charles M. Rick
    • 1
  1. 1.Department of Vegetable CropsUniversity of CaliforniaDavisUSA

Personalised recommendations