Advertisement

Increasing the Effectiveness, Efficiency, and Specificity of Mutation Induction in Flowering Plants

  • R. A. Nilan
Part of the Basic Life Sciences book series (BLSC, volume 2)

Abstract

Numerous agents are now available for inducing mutations and chromosome aberrations for a variety of investigations in plant genetics, development, and evolution and in plant breeding (mutation breeding). These include the widely used physical mutagens X-rays, γ-rays, neutrons, and β-rays; the potent alkylating compounds ethyl methanesulfonate (EMS), diethyl sulfate (dES), and ethyleneimine (EI); and nitroso compounds, nitroso ethylurethane (NEH), nitroso methylurethane (NMU), ethyl nitrosourea (ENH), and methyl nitrosourea (MNH). Much of the recent research on induced mutation in plants has been reviewed by Auerbach and Kilbey (4). Thus information in this chapter will be largely confined to experiments with flowering plants.

Keywords

International Atomic Energy Agency Flowering Plant Chromosome Aberration Mutation Induction Barley Seed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alderson, T., and Scott, B. R. (1971). Induction of mutation by -y-irradiation in the presence of oxygen or nitrogen. Nature New Biot 230: 45–48.Google Scholar
  2. 2.
    Auerbach, C. (1966). The role of mutagen specificity in mutation breeding. Genetika 1: 3–11.Google Scholar
  3. 3.
    Auerbach, C. (1967). The chemical production of mutations. Science 158: 1141–1147.PubMedCrossRefGoogle Scholar
  4. 4.
    Auerbach, C., and Kilbey, B. J. (1971). Mutation in eucaryotes. Ann. Rev. Genet. 5: 163–218.PubMedCrossRefGoogle Scholar
  5. 5.
    Auerbach, C., and Ramsay, D. (1968). The influence of treatment conditions on the selective mutagenic action of diepoxybutane in Neurospora. Japan. J. Genet. 43: 1–8.CrossRefGoogle Scholar
  6. 6.
    Auerbach, C., and Ramsay, D. (1970). Analysis of a case of mutagen specificity in Neurospora crassa. II. Interaction between treatments with diepoxybutane (DEB) and ultraviolet light. Mol. Gen. Genet. 109: 1–17.PubMedCrossRefGoogle Scholar
  7. 7.
    Auerbach, C., and Ramsay, D. (1970). Analysis of a case of mutagen specificity in Neurospora crassa. III. Fractionated treatment with diepoxybutane (DEB). Mol. Gen. Genet. 109: 285–291.PubMedCrossRefGoogle Scholar
  8. 8.
    Brink, R. A., Styles, E. D., and Axtell, J. D. (1968). Paramutation: Directed genetic change. Science 159: 161–170.PubMedCrossRefGoogle Scholar
  9. 9.
    Brock, R. D. (1969). Increasing the specificity of mutation. In Induced Mutations in Plants, STI/PUB/231, International Atomic Energy Agency, Vienna, pp. 93–100.Google Scholar
  10. 10.
    Brock, R. D. (1971). Differential mutation of the ß-galactosidase gene of Escherichia coli. Mutation Res. 11: 181–186.PubMedGoogle Scholar
  11. 11.
    Brock, R. D. (1972). The role of induced mutations in plant improvement. In Induced Mutations and Plant Improvement, STI/PUB/297, International Atomic Energy Agency, Vienna, pp. 513–521.Google Scholar
  12. 12.
    Brockman, H. E., de Serres, F. J., and Barnett, W. E. (1969). Analysis of ad-3 mutants induced by nitrous acid in a heterokaryon of Neurospora crassa. Mutation Res. 7: 307–314.PubMedCrossRefGoogle Scholar
  13. 13.
    Brunner, H., and Mikaelsen, K. (1971). Beeinflussende Faktoren in der mutagenen Wirkung von Athylmethansulfonat auf Gerste. Z. Pflanzenzüchtg. 66: 9–36.Google Scholar
  14. 14.
    Conger, B. V. (1972). Contributions of seed meristems to radiobiology. In Miller, M. W., and Kuehnert, C. (eds.), The Dynamics of Meristem Cell Populations, Plenum Press, New York.Google Scholar
  15. 15.
    Conger, B. V. (1972). Control and modification of seed radiosensitivity. Trans. ASAE 15: 780–784.Google Scholar
  16. 16.
    Conger, B. V., and Constantin, M. J. (1970). Oxygen effect following neutron irradiation of dry barley seeds. Radiat. Bot. 10: 95–97.CrossRefGoogle Scholar
  17. 17.
    Conger, B. V., Constantin, M. J., and Carabia, J. V. (1972). Seed radiosensitivity: Wide range in oxygen-enhancement ratio after gamma-irradiation of eight species. Internat. J. Radiat. Biol. 22: 225–235.CrossRefGoogle Scholar
  18. 18.
    de Kock, M. J. (1972). The actions of gamma irradiation and N-methyl-N-nitrosourea in plants. Ph.D. dissertation, Washington State University, Pullman.Google Scholar
  19. 19.
    de Serres, F. J., Brockman, H. E., Barnett, W. E., and Kölmark, H. G. (1967). Allelic complementation among nitrous acid-induced ad-3B mutants of Neurospora crassa. Mutation Res. 4: 415–424.PubMedCrossRefGoogle Scholar
  20. 20.
    de Serres, F. J., Brockman, H. E., Barnett, W. E., and Kölmark, H. G. (1971). Mutagen specificity in Neurospora crassa. Mutation Res. 12: 129–142.CrossRefGoogle Scholar
  21. 21.
    Doll, H. (1972). Variation in protein quantity and quality induced in barley by EMS treatment. In Induced Mutations and Plant Improvement, STI/PUB/297, International Atomic Energy Agency, Vienna, pp. 331–342.Google Scholar
  22. 22.
    Ebert, M., and Howard, A. (eds.) (1972). Radiation effects and the mitotic cycle. In Current Topics in Radiation Research Quarterly, North-Holland, Amsterdam, pp. 244–391.Google Scholar
  23. 23.
    Ehrenberg, L. (1971). Higher plants. In Hollaender, A. (ed.), Chemical Mutagens: Principles and Methods for Their Detection, Plenum Press, New York, pp. 365–386.Google Scholar
  24. 24.
    Ehrenberg, L, Gustafsson, A., and Lundqvist, U. (1961). Viable mutants induced in barley by ionizing radiations and chemical mutagens. Hereditas 47: 243–282.CrossRefGoogle Scholar
  25. 25.
    Gaul, H. (1965). Induced mutations in plant breeding. In Geerts, S. J. (ed.), Genetics Today, Vol. 3, Pergamon Press, New York, pp. 689–709.Google Scholar
  26. 26.
    Gaul, H., Frimmel, G., Gichner, T., and Ulonska, E. (1972). Efficiency of mutagenesis. In Induced Mutations and Plant Improvement, STI/PUB/297, International Atomic Energy Agency, Vienna, pp. 121–139.Google Scholar
  27. 27.
    Gichner, T., VelemínsV, J., Pokornt, V., and Svachulovâ, J. (1972). Influence of post-treatment washing on the mutagenic effects in propyl methanesulfonate-and isopropyl methanesulfonate-treated barley seeds. Radiat. Bot. 12: 221–227.Google Scholar
  28. 28.
    Gopal-Ayengar, A. R., and Swaminathan, M. S. (1964). Use of neutron irradiation in agriculture and applied genetics. In Biological Effects of Neutron and Proton Irradiations, Vol. 1, STI/PUB/80, International Atomic Energy Agency, Vienna, pp. 409–432.Google Scholar
  29. 29.
    Grant, C. J., Heslot, H., and Ferrary, R. (1969). The effects of chemical mutagens in relation to the chromosome cycle. In Darlington, C. D., and Lewis, K. R. (eds.), Chromosomes Today, Vol. 2, Plenum Press, New York, pp. 75–78.Google Scholar
  30. 30.
    Gustafsson, A. (1963). Productive mutations induced in barley by ionizing radiations and chemical mutagens. Hereditas 50: 211–263.CrossRefGoogle Scholar
  31. 31.
    Gustafsson, A., Hagberg, A., Persson, G., and Wiklund, K. (1971). Induced mutations and barley improvement. Theoret. Appl. Genet. 41: 239–248.CrossRefGoogle Scholar
  32. 32.
    Hess, D. (1970). Versuche zur Transformation an höheren Pflanzen: Genetische Charakterisierung einiger mutmablich transformierter Pflanzen. Z. Pflanzenphysiol. 63: 3143.Google Scholar
  33. 33.
    Ingversen, J., Andersen, A. J., Doll, H., and Köie, B. (1973). Selection and properties of high lysine barley. In Nuclear Techniques for Seed Protein Improvement. STI/PUB/320 International Atomic Energy Agency, Vienna, pp. 193–198.Google Scholar
  34. 34.
    Jain, H. K., Raut, R. N., and Khamankar, Y. G. (1968). Base specific chemicals and mutation analysis in Lycopersicon. Heredity 23: 247–256.CrossRefGoogle Scholar
  35. 35.
    Kasha, K. J., and Kao, K. N. (1970). High frequency haploid production in barley. Nature 225: 874–876.PubMedCrossRefGoogle Scholar
  36. 36.
    Kihlman, B. A. (1966). Actions of Chemicals on Dividing Cells, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  37. 37.
    Klein, R. M., and Klein, D. T. (1971). Post-irradiation modulation of ionizing radiation damage to plants. Bot. Rev. 37: 397–436.CrossRefGoogle Scholar
  38. 38.
    Konzak, C. F., Nilan, R. A., Wagner, J., and Foster, R. J. (1965). Efficient chemical mutagenesis. In The Use of Induced Mutations in Plant Breeding. Radiat. Bot. (Suppl.) 5: 49–70.Google Scholar
  39. 39.
    Konzak, C. F., Wickham, I. M., and de Kock, M. J. (1972). Advances in methods of mutagen treatment. In Induced Mutations and Plant Improvement, STI/PUB/297, International Atomic Energy Agency, Vienna, pp. 95–119.Google Scholar
  40. 40.
    Lange, W. (1971). Crosses between Hordeum vulgare L. and H. bulbosum L. I. Production, morphology and meiosis of hybrids, haploids and dihaploids. Euphytica 20: 1429.Google Scholar
  41. 41.
    Ledoux, L., Huart, R., and Jacobs, M. (1972). Fate and biological effects of exogenous DNA in Arabidopsis thaliana. In Lupton, F. G. H., Jenkins, G., and Johnson, R. (eds.), The Way Ahead in Plant Breeding, Cambridge University Press, New York, pp. 165–184.Google Scholar
  42. 42.
    Lundqvist, U., and von Wettstein, D. (1962). Induction of eceriferum mutants in barley by ionizing radiations and chemical mutagens. Hereditas 48: 342–362.CrossRefGoogle Scholar
  43. 43.
    Lundqvist, U., von Wettstein-Knowles, P., and von Wettstein, D. (1968). Induction of eceriferum mutants in barley by ionizing radiations and chemical mutagens. II. Hereditas 59: 473–504.CrossRefGoogle Scholar
  44. 44.
    McClintock, B. (1967). II. The role of the nucleus. Genetic systems regulating gene expression during development. Develop. Biol. (Suppl.) 1: 84–112.Google Scholar
  45. 45.
    Mailing, H. V. (1971). Hydroxylamine-induced purple mutants (ad-3) in Neurospora crassa. Hereditas 68: 219–234.CrossRefGoogle Scholar
  46. 46.
    Mailing, H. V., and de Serres, F. J. (1967). Relation between complementation patterns and genetic alterations in nitrous acid-induced ad-3B mutants of Neurospora crassa. Mutation Res. 4: 425–440.Google Scholar
  47. 47.
    Mailing, H. V., and de Serres, F. J. (1968). Identification of genetic alterations induced by ethyl methanesulfonate in Neurospora crassa. Mutation Res. 6: 181–193.Google Scholar
  48. 48.
    Melchers, G. (1972). Haploid higher plants for plant breeding. Z. PJlanzenzüchtg. 67: 19–32.Google Scholar
  49. 49.
    Mikaelsen, K. (1968). Comparisons between chromosome aberrations induced by ionizing radiations and alkylating agents at different stages of mitotis in barley seeds. In Mutations in Plant Breeding II, STI/PUB/182, International Atomic Energy Agency, Vienna, pp. 287–290.Google Scholar
  50. 50.
    Mikaelsen, K., Brunner, H., and Li, W. C. (1971). Influence of postwash time on the mutagenic effects of ethylmethanesulphonate (EMS) in barley seeds. Hereditas 69: 15–18.CrossRefGoogle Scholar
  51. 51.
    Mottinger, J. P. (1970). The effects of X-rays on the bronze and shrunken loci in maize. Genetics 64: 259–271.PubMedGoogle Scholar
  52. 52.
    Narayanan, K. R., and Konzak, C. F. (1969). Influence of chemical post-treatments on the mutagenic efficiency of alkylating agents. In Induced Mutations in Plants, STI/PUB/231, International Atomic Energy Agency, Vienna, pp. 281–304.Google Scholar
  53. 53.
    Natarajan, A. T., and Shivasankar, G. (1965). Studies on modification of mutation response of barley seeds to ethyl methanesulfonate. Z. Verebungsl. 96: 13–21.Google Scholar
  54. 54.
    Neuffer, M. G. (1966). Stability of the suppressor element in two mutator systems at the A, locus in maize. Genetics 53: 541–549.PubMedGoogle Scholar
  55. 55.
    Nilan, R. A. (1964). The Cytology and Genetics of Barley, 1951–1962, Washington State University Press, Pullman.Google Scholar
  56. 56.
    Nilan, R. A. (1967). Nature of induced mutations in higher plants. In Induced Mutations and Their Utilization (Erwin-Bauer Memorial Lectures IV), Akademie-Verlag, Berlin, pp. 5–20.Google Scholar
  57. 57.
    Nilan, R. A. (1972). Mutagenic specificity in flowering plants: Facts and prospects. In Induced Mutations and Plant Improvement, STI/PUB/297, International Atomic Energy Agency, Vienna, pp. 141–151.Google Scholar
  58. 58.
    Nilan, R. A., Konzak, C. F., Wagner, J., and Legault, R. R. (1965). Effectiveness and efficiency of radiations for inducing genetic and cytogenetic changes. In The Use of Induced Mutations in Plant Breeding. Radiat. Bot. (Suppl.) 5: 71–89.Google Scholar
  59. 59.
    Nilan, R. A., Kleinhofs, A., and Sideris, E. G. (1969). Structural and biochemical concepts of mutations in flowering plants. In Induced Mutations in Plants, STI/PUB/231, International Atomic Energy Agency, Vienna, pp. 35–49.Google Scholar
  60. 60.
    Nilan, R. A., Sideris, E. G., Kleinhofs, A., Sander, C., and Konzak, C. F. (1973). Azide-A potent mutagen. Mutation Res. 17: 142–144.CrossRefGoogle Scholar
  61. 61.
    Nitsch, J. P. (1972). Haploid plants from pollen. Z. Pflanzenzüchtg. 67: 3–18.Google Scholar
  62. 62.
    Persson, G., and Hagberg, A. (1969). Induced variation in a quantitative character in barley. Morphology and cytogenetics of erectoides mutants. Hereditas 61: 115–178.CrossRefGoogle Scholar
  63. 63.
    Peterson, P. A. (1970). Controlling elements and mutable loci in maize: Their relationship to bacterial episomes. Genetica 41: 33–56.PubMedCrossRefGoogle Scholar
  64. 64.
    Rao, N. S., and Gopal-Ayengar, A. R. (1964). Combined effects of thermal neutrons and diethyl sulphate on mutation frequency and spectrum in rice. In Biological Effects of Neutron and Proton Irradiations, Vol. 1, STI/PUB/80, International Atomic Energy Agency, Vienna, pp. 383–391.Google Scholar
  65. 65.
    Savin, V. N., Swaminathan, M. S., and Sharma, B. (1968). Enhancement of chemically-induced mutation frequency in barley through alteration in the duration of pre-soaking of seeds. Mutation Res. 6: 101–107.CrossRefGoogle Scholar
  66. 66.
    Schwaier, R., Nashed, N., and Zimmermann, F. K. (1968). Mutagen specificity in the induction of karyotic versus cytoplasmic respiratory deficient mutants in yeast by nitrous acid and alkylating nitrosamides. Mol. Gen. Genet. 102: 290–300.PubMedCrossRefGoogle Scholar
  67. 67.
    Sigurbjörnsson, B. (1971). Induced mutations in plants. Sci Am. 224: 86–95.PubMedCrossRefGoogle Scholar
  68. 68.
    Smith, H. H. (1961). Mutagenic specificity and directed mutation. In Mutation and Plant Breeding, Publ. No. 891, NAS-NRC, Washington, D.C., pp. 413–436.Google Scholar
  69. 69.
    Smith, H. H. (1971). Broadening the base of genetic variability in plants. J. Hered. 62: 265–276.Google Scholar
  70. 70.
    Smith, H. H. (1972). Environmental modulation of plant response to neutron irradiation. Radiat. Bot. 12: 229–237.CrossRefGoogle Scholar
  71. 71.
    Smith, H. H. (1972). Comparative genetic effects of different physical mutagens in higher plants. In Induced Mutations and Plant Improvement, STI/PUB/297, International Atomic Energy Agency, Vienna, pp. 75–93.Google Scholar
  72. 72.
    Smith, H. H. (1973). Model genetic systems for studying mutation, differentiation, and somatic cell hybridization in plants. Presented at FAO/IAEA/EUCARPIA Conference on Mutation and Polyploidy, Oct. 2–8, 1972, Bari, Italy (in press).Google Scholar
  73. 73.
    Swaminathan, M. S. (1969). Mutation breeding. In Oshima, C. (ed.), Proceedings of the XlIth International Congress of Genetics, Vol. 3, The Science Council of Japan, Tokyo, pp. 327–347.Google Scholar
  74. 74.
    Swaminathan, M. S. (1972). Mutational reconstruction of crop ideotypes. In Induced Mutations and Plant Improvement, STI/PUB/297, International Atomic Energy Agency, Vienna, pp. 155–171.Google Scholar
  75. 75.
    Swaminathan, M. S., and Sarma, N. P. (1968). Alteration of the mutation spectrum in barley through treatments at different periods in the S phase of DNA synthesis. Current Sci. 37: 685–686.Google Scholar
  76. 76.
    Swaminathan, M. S., Austin, A., Kaul, A. K., and Naik, M. S. (1969). Genetic and agronomic enrichment of the quantity and quality of proteins in cereals and pulses. In New Approaches to Breeding for Improved Plant Protein, STI/PUB/80, International Atomic Energy Agency, Vienna, pp. 71–86.Google Scholar
  77. 77.
    Wagner, J. H., Nawar, M. M., Konzak, C. F., and Nilan, R. A. (1968). The influence of pH on the biological changes induced by ethyleneimine in barley. Mutation Res. 5: 57–64.CrossRefGoogle Scholar
  78. 78.
    Westergaard, M. (1960). A discussion of mutagenic specificity. 1. Specificity on the “geographical” level. In Chemische Mutagenese (Erwin-Baur-Geddchtnisvorlesungen I), Akademie-Verlag, Berlin, pp. 116–121.Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • R. A. Nilan
    • 1
  1. 1.Department of Agronomy and Soils and Program in GeneticsWashington State UniversityPullmanUSA

Personalised recommendations