Advertisement

Super Case II Transport of Organic Vapors in Glassy Polymers

  • C. H. M. Jacques
  • H. B. Hopfenberg
  • V. Stannett
Part of the Polymer Science and Technology book series (PST, volume 6)

Abstract

Alfrey, Turner, and Lloyd have defined Fickian transport and Case II transport as the two limiting cases for the transort of an organic penetrant through an amorphous glassy polymer.1 Fickian transport refers to the interdiffusion of penetrant and polymer described by Fick’s equations. In general, Fickian diffusion is only observed in glassy systems when the penetrants are simple gases, solvents with small molecular diameters, or partial solvents at very low temperatures and penetrant activities. At temperatures and penetrant activities where partial solvents swell the polymer, transport is often controlled by a combination of polymer relaxation and Fickian diffusion mechanisms. Case II transport occurs when the sorption is entirely controlled by stress-induced relaxations taking place at a sharp boundary separating an outer swollen shell, essentially at equilibrium penetrant concentration, from an unpenetrated glassy core. Ideally, this sharp boundary moves through the polymer at a constant velocity during Case II transport.

Keywords

Front Velocity Polystyrene Film Constant Rate Period Phenylene Oxide Normal Hexane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Alfrey, Jr., E. F. Gurnee, and W. O. Lloyd, J. Polym. Sci. C, 12, 249 (1966).CrossRefGoogle Scholar
  2. 2.
    J. Crank and C. S. Park, “Diffusion in Polymers,” Academic Press, London (1968).Google Scholar
  3. 3.
    A. Peterlin, J. Polym. Sci. B, 3, 1087 (1965).Google Scholar
  4. 4.
    A. Peterlin, Makromol. Chem., 124, 136 (1969).CrossRefGoogle Scholar
  5. 5.
    H. L. Frisch, T. T. Wang, and T. K. Kwei, J. Polym. Sci. A-2, 7, 879 (1969).CrossRefGoogle Scholar
  6. 6.
    T. T. Wang, T. K. Kwei, and H. L. Frisch, J. Polym. Sci. A-2, 7, 2019 (1969).CrossRefGoogle Scholar
  7. 7.
    T. K. Kwei and H. M. Zupko, J. Polym. Sci. A-2, 7, 867, (1969).CrossRefGoogle Scholar
  8. 8.
    H. B. Hopfenberg, R. H. Holley, and V. T. Stannett, Polym. Eng. Sci., 9, 242, (1969).CrossRefGoogle Scholar
  9. 9.
    R. H. Holley, H. B. Hopfenberg, and V. Stannett, Polym. Eng. Sci., 10, 376 (1970).CrossRefGoogle Scholar
  10. 10.
    B. R. Baird, H. B. Hopfenberg, and V. T. Stannett, Polym. Eng. Sci., 11, 274Google Scholar
  11. 11.
    C. H. M. Jacques, H. B. Hopfenberg, and V. Stannett, Polym. Eng. Sci., 13, 81 (1973).CrossRefGoogle Scholar
  12. 12.
    C. H. M. Jacques, H. B. Hopfenberg, and V. Stannett, Polym. Eng. Sci., in press.Google Scholar
  13. 13.
    H. B. Hopfenberg, Ph.D. Thesis, Mass. Inst. Tech., Cambridge, Mass. (1964).Google Scholar
  14. 14.
    T. K. Kwei, J. Polym. Sci. A-2, 10, 1849 (1972).Google Scholar
  15. 15.
    E. P. Cizak (assigned to General Electric Company), U. S. Pat. 3,383,435 (May 14, 1968 ).Google Scholar
  16. 16.
    R. H. Holley, Ph.D. Thesis, North Carolina State Univ., Raleigh, N. C. (1969).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • C. H. M. Jacques
    • 1
  • H. B. Hopfenberg
    • 1
  • V. Stannett
    • 1
  1. 1.Department of Chemical EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations