Advertisement

Diffusion in Glassy Polymers

  • T. K. Kwei
  • Tsuey T. Wang
Part of the Polymer Science and Technology book series (PST, volume 6)

Abstract

It is well known that the diffusion of organic vapors or liquids in glassy polymer often fails to obey Fick’s Law. Both experimental results and theoretical explanations of the “anomaly” were summarized by Park in 1968.1 By and large, the interpretations proposed at that time still appear to offer a sound basis, at least qualitatively, for the understanding of the complex phenomena. In the meantime, interest in this subject was further stimulated by the work of Alfrey, Gurnee and Lloyd.2 In their elegant paper, a limiting case of non-Fickian behavior of liquid diffusion in glassy polymers was characterized by the following features. (1) As the solvent molecules penetrate the polymer, a sharp advancing boundary separates the inner glassy core from the outer swollen shell. The existence of a sharp boundary, however, is not a sufficient criterion for non-Fickian diffusion.3 (2) At temperatures well below the glass temperature of the unswollen polymer, the distance of penetration, or the weight gain, increases linearly with time, i.e., the boundary between the glassy core and the swollen shell advances at a constant velocity, v. This limiting case was designated by Alfrey, et al., as case II diffusion.2

Keywords

Glassy Polymer Fickian Diffusion Partial Stress Solvent Uptake Phenylene Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. S. Park, Chapter 5 in “Diffusion in Polymers” ed. by J. Crank and G. S. Park, Academic Press, New York, (1968).Google Scholar
  2. 2.
    T. Alfrey, Jr., E. F. Gurnee, and W. G. Lloyd, J. Polym. Sci., C12, 249 (1966).Google Scholar
  3. 3.
    J. Crank, Trans. Faraday Soc., 47, 450 (1951).CrossRefGoogle Scholar
  4. 4.
    T. K. Kwei and H. M. Zupko, J. Polym. Sci., A-2, 7867 (1969).Google Scholar
  5. 5.
    C. H. M. Jacques, H. B. Hopfenberg, and V. T. Stannett, Polym. Eng. Sci., 13, 81 (1973).CrossRefGoogle Scholar
  6. 6.
    A. S. Michaels, H. J. Bixler and H. B. Hopfenberg, J. Appl. Polym. Sci., 12, 991 (1968).CrossRefGoogle Scholar
  7. 7.
    B.R. Baird, H. B. Hopfenberg, and V. T. Stannett, Polym. Eng. Sci., 11, 274 (1971).CrossRefGoogle Scholar
  8. 8.
    C. H. M. Jacques, H. B. Hopfenberg, and V. T. Stannett, J. Appl. Polym. Sci., 18, 223 (1974).CrossRefGoogle Scholar
  9. 9.
    H. L. Frisch, T. T. Wang, and T. K. Kwei, J. Polym. Sci., A-2, 7 879 (1969).Google Scholar
  10. 10.
    R. J. Bearman, J. Chem. Phys., 28, 662 (1958).CrossRefGoogle Scholar
  11. 11.
    T. T. Wang, T. K. Kwei, and H. L. Frisch, J. Polym. Sci., A-2, 7 2019 (1969).Google Scholar
  12. 12.
    T. T. Wang and T. K. Kwei, Macromolecules, 6 919 (1973).CrossRefGoogle Scholar
  13. 13.
    T. K. Kwei, T. T. Wang, and H. M. Zupko, Macromolecules, 5 645 (1972).CrossRefGoogle Scholar
  14. 14.
    A. Kishimoto, H. Fujita, H. Odani, M. Kurata, and M. Tamura, J. Phys. Chem., 64, 594 (1960).Google Scholar
  15. 15.
    S. Timoshenko and J. N. Goodier, Theory of Elasticity, McGraw-Hill Book Co., Inc., Third Ed., (1970), p. 452.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • T. K. Kwei
    • 1
  • Tsuey T. Wang
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations