Advertisement

Steady State Transport Phenomena in Non-Ideal Permeant-Polymer Systems

  • A. Peterlin
Part of the Polymer Science and Technology book series (PST, volume 6)

Summary

The so generally used Fick’s first law of diffusion with the material current density proportional to concentration gradient of the penetrant is inapplicable to even the simplest uniform homogeneous polymer membranes which as a rule are not ideal. The nonideality shows up in a nonlinear increase of sorbed penetrant with applied pressure of gas or concentration of liquid. That modifies the concentration gradient in the membrane. The same effect can obtain as a consequence of the finite compressibility of swollen membrane under the applied pressure gradient in the hydraulic experiment. In both cases the membrane becomes nonuniform under the influence of concentration or pressure gradient in spite of the fact that it is uniform in a gradient free environment. But the true driving force is in all cases the gradient of the chemical potential of the penetrant and not that of concentration. The deviations of sorption, partition and diffusion coefficients from ideality in highly swollen and in plastically deformed polymer films can be to some extent described by the change of fractional free volume as a consequence of the finite amount of sorbate present. A new effect may occur in the hydraulic experiment. With increasing swelling the membranes exhibit a substantial viscous flow permeability which may be orders of magnitude larger than the diffusive permeability. It cannot be described in terms of diffusive transport.

Keywords

Applied Pressure Diffusive Transport Hydraulic Permeability Hydraulic Diffusion Liquid Volume Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. M. Barrer, “Diffusion in and Through Solids”, Univ. Press, Cambridge, 1951.Google Scholar
  2. 2.
    H. Fujita, Adv. High Polymer Res. 3, 1 (1961).CrossRefGoogle Scholar
  3. 3.
    H. Yasuda and V. Stannett, Ency. Polymer Sci. Techn. 2, 316 (1965).Google Scholar
  4. 4.
    C. E. Rogers, “Physics and Chem. of the Organic Solid State,” Ed. by D. Fox, M. M. Labes, and A. Weissberger, Interscience Publ., New York, 1965, Vol. II, Chapt. 6.Google Scholar
  5. 5.
    H. Yasuda, H. G. Clark, and V. Stannett, Ency. Polymer Sci., Techn. 9, 794 (1968).Google Scholar
  6. 6.
    J. Crank and G. S. Park, “Diffusion in Polymers,” Academic Press, New York, 1968.Google Scholar
  7. 7.
    R. Ash and R. M. Barrer, J. Phys. D4, 888 (1971).Google Scholar
  8. 8.
    A. Katchalsky and P. E. Curran, “Nonequilibrium Thermodynamics in Biophysics,” Harvard Univ. Press, Cambridge, Mass., 1965, Chapt. 10.Google Scholar
  9. 9.
    A. Peterlin and J. L. Williams, J. Appl. Polymer Sci. 15, 1493 (1971).CrossRefGoogle Scholar
  10. 10.
    J. H. Petropoulos and P. P. Roussis, J. Chem. Phys. 47, 1491, 1496 (1967);Google Scholar
  11. J. H. Petropoulos and P. P. Roussis, J. Chem. Phys. 50, 3951 (1969);CrossRefGoogle Scholar
  12. J. H. Petropoulos and P. P. Roussis, J. Chem. Phys. 51, 1332 (1969).CrossRefGoogle Scholar
  13. 11.
    A. Peterlin, J. Appl. Polymer Sci. 15, 3127 (1971);CrossRefGoogle Scholar
  14. Kolloid-Z and Z. Polymere 250, 553 (1972).CrossRefGoogle Scholar
  15. 12.
    A. Peterlin and H. G. Olf, J. Macromol. Sci. B6, 571 (1972).Google Scholar
  16. 13.
    V. Stannett, H. B. Hopfenberg, and J. H. Petropoulos, “Macromol. Sci.,” Ed. by C. E. H. Bawn, Univ. Park Press, Baltimore, Maryland 1972, p. 329.Google Scholar
  17. 14.
    H. Yasuda and A. Peterlin, J. Appl. Polymer Sci. 17, 443 (1973).CrossRefGoogle Scholar
  18. 15.
    S. Sternberg and C. E. Rogers, J. Appl. Polymer Sci., 12, 1017 (1968).CrossRefGoogle Scholar
  19. 16.
    D. R. Paul, Coating and Plastics Preprint 34, 436 (1974).Google Scholar
  20. 17.
    C. E. Rogers, V. Stannett, and M. Scwarc, Ind. Eng. Chem. 49, 1933 (1951).CrossRefGoogle Scholar
  21. 18.
    D. R. Paul, J. Appl. Polymer Sci. 16, 771 (1972).CrossRefGoogle Scholar
  22. 19.
    D. R. Paul, J. Polymer Sci. Phys. 11 289 (1973).Google Scholar
  23. 20.
    D. R. Paul and O. M. Ebra-Lima, J. Appl. Polymer Sci. 14, 2201 (1970).CrossRefGoogle Scholar
  24. 21.
    D. R. Paul and O. M. Ebra-Lima, J. Appl. Polymer Sci. 15, 2199 (1971).CrossRefGoogle Scholar
  25. 22.
    S. A. Stern, S. M. Fang, and H. L. Frisch, J. Polymer Sci. A2, 10, 201 (1972).Google Scholar
  26. 23.
    L. R. G.Treloar, “The Physics of Rubber Elasticity, ” Clarendon Press, Oxford 1958, p. 165.Google Scholar
  27. 24.
    A. Peterlin and H. Yasuda, J. Appl. Polymer Sci. (in press).Google Scholar
  28. H. Yasuda, C. E. Lamaze, and A. Peterlin, J. Polymer Sci. A2, 9, 1117 (1970).Google Scholar
  29. 26.
    A. Peterlin, H. Yasuda, and H. G. Olf, J. Appl. Polymer Sci. 16, 865 (1972).CrossRefGoogle Scholar
  30. 27.
    R. B. Bird, W. E. Stewart, and E. N. Lightfoot, “Transport Phenomena,” J. Wiley and Sons, New York (1960).Google Scholar
  31. 28.
    H. Frisch, personal communication.Google Scholar
  32. 29.
    D. R. Paul, Lecture at ACS Meeting in Los Angeles, Cal., April 1–5, 1974.Google Scholar
  33. 30.
    M. H. Cohen and D. Turnbull, J. Chem. Phys. 31, 1164 (1959).CrossRefGoogle Scholar
  34. 31.
    W. Jost, “Diffusion,” Academic Press, New York (1969).Google Scholar
  35. 32.
    H. Fujita and A. Kashimoto, J. Chem. Phys. 34, 393 (1961).CrossRefGoogle Scholar
  36. 33.
    J. D. Ferry, “Viscoelastic Properties of Polymers”, J. Wiley & Sons, New York (1961).Google Scholar
  37. 34.
    A. K. Doolittle, J. Appl. Phys., 22, 1971 (1951).Google Scholar
  38. 35.
    S. Prager and F. A. Long, J. Amer Chem. Soc. 73, 4072 (1951).CrossRefGoogle Scholar
  39. 36.
    C. E. Rogers, V. Stannett, and M. Scwarc, J. Polymer Sci., 45, 61 (1960).CrossRefGoogle Scholar
  40. 37.
    H. Fujita, A. Kishimoto, K. Matsumoto, Trans. Far. Soc., 56, 424 (1960).CrossRefGoogle Scholar
  41. 38.
    A. Peterlin, J. L. Williams, and V. Stannett, J. Polymer Sci. A-2, 5.Google Scholar
  42. 39.
    J. L. Williams and A. Peterlin, J. Polymer Sci., A-2, 9, 1483 (1971).CrossRefGoogle Scholar
  43. 40.
    Y. Takagi and H. Hattori, J. Appl. Polymer Sci., 9, 2167 (1965).CrossRefGoogle Scholar
  44. 41.
    A. Peterlin and J. L. Williams, Brit. Polymer J.,4, 271 (1972).CrossRefGoogle Scholar
  45. 42.
    A. Peterlin, IUPAC Symp. Macromol., Aberdeen, Scotland, September 10–14, 1973.Google Scholar
  46. 43.
    F. J. Balta-Calleja and A. Peterlin, J. Macromol. Sci. 4B, 519 (1970).Google Scholar
  47. 44.
    W. Glenz, N. Morosoff, and A. Peterlin, J. Polymer Sci. B9, 211 (1971).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • A. Peterlin
    • 1
  1. 1.Camille Dreyfus LaboratoryResearch Triangle InstituteResearch Triangle ParkUSA

Personalised recommendations