Advertisement

Transport Behaviour of Asymmetric Cellulose Acetate Membranes in Dialysis and Hyperfiltration

  • W. Pusch
Part of the Polymer Science and Technology book series (PST, volume 6)

Abstract

The transport of salt solutions across asymmetric cellulose acetate membranes is discussed using the linear relationships of the thermodynamics of irreversible processes. The corresponding transport coefficients such as the mechanical permeability; 1p, the osmotic permeability, 1π, and the reflection coefficient, σ, are determined by dialysis experiments for different salt solutions. The experimental results manifest a strong dependence of 1p and 1π on the salt concentration. This is shown to be due to concentration polarization within the porous sublayer of the asymmetric membrane. The dependence of the mechanical permeability, 1p, on concentration is then estimated using a Nernst-Planck equation for the salt transport within the porous sublayer of the asymmetric membrane. The influence of the concentration profile within the porous sublayer, caused by concentration polarization effects, on measured membrane potentials is also discussed. Furthermore, a relationship between salt rejection, r, measured in hyperfiltration and the three transport coefficients, the salt concentration of the brine, as well as the pressure difference, ΔP, across the membrane is derived and compared to experimental findings.

Keywords

Salt Concentration Reflection Coefficient Active Layer Transport Coefficient Volume Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. E. Reid and E. J. Breton, J. Appl. Polymer Sci. 1, 133 (1959).CrossRefGoogle Scholar
  2. 2.
    S. Loeb and S. Sourirajan, Advan. Chem. Ser. 38, 117 (1962).CrossRefGoogle Scholar
  3. 3.
    R. L. Riley, U. Merten, and J. 0. Gardner, Desalination 1, 30 (1966).CrossRefGoogle Scholar
  4. 4.
    K. S. Spiegler, J. electrochem. Soc. 100, 303 C (1953)CrossRefGoogle Scholar
  5. 5.
    T. Foley, J. Klinowski, and P. Mears, Proc. R. Soc. London A 366, 327 (1974).Google Scholar
  6. 6.
    G. Schmid, Z. Elektrochem. 54, 424 (1950); ibid. 55, 229 (1951); ibid. 56, 181 (1952).Google Scholar
  7. 7.
    R. Schlögl, Stofftransport durch Membranen, Dr.-Dietrich-Steinkopff-Verlag, Darmstadt, 1964.Google Scholar
  8. 8.
    A. J. Staverman, Rec. Tray. chim. Pays-Bas 70, 344 (1951).CrossRefGoogle Scholar
  9. 9.
    W. Pusch, Proc. Nato Advanced Study Inst. “Polyelectrolytes II”, Forges-les-Eaux, 1973, E. Sélégny ed., Reidel Publishing Co., Dordrecht, Holland (in preparation).Google Scholar
  10. 10.
    W. Pusch, Chemie-Ingenieur-Technik 20, 1216 (1973).Google Scholar
  11. 11.
    W. Pusch, Proc. 4th Intl. Symp. on Fresh Water from the Sea, Vol. 4, p. 321/32, A. and E. Delyannis, published by the editors, Athens 1973.Google Scholar
  12. 12.
    W. Pusch, Proc. of a Symp. on “Structure of Water and Electrolyte Solutions”, W. Luck ed., Verlag Chemie und Physik Verlag, Weinheim/Bergstr., Germany, 1974.Google Scholar
  13. 13.
    K. S. Spiegler and 0. Kedem, Desalination 1, 377 (1966).CrossRefGoogle Scholar
  14. 14.
    W. Pusch, Proc. 3rd Intl. Symp. on Fresh Water from the Sea, Vol. 2, 535/49, A. and E. Delyannis, editors, published by the editors, Athens, 1970.Google Scholar
  15. 15.
    K. S. Spiegler and Ch. P. Minning, “Streaming Potentials in Hyperfiltration of Saline Water”, Ph.D. thesis of Ph. P. Minning at U.C.L.A., Berkeley, Sea Water Conversion Laboratory, 1973; Proc. Nato Advanced Study Inst. “Polyelectrolytes II”, Forges-les-Eaux, 1973, E. Sélégny ed., Reidel Publishing Co., Dordrecht, Holland (in preparation).Google Scholar
  16. 16.
    W. Pusch and R. Riley, Desalination 14, 389 (1974).CrossRefGoogle Scholar
  17. 17.
    G. Boari, C. Merli, G. Mossa, and R. Passino, Proc. 4th Int. Symp. on Fresh Water from the Sea, Vol. 4, p. 49/63, A. and E. Delyannis, editors, published by the editors, Athens, 1973.Google Scholar
  18. 18.
    J. Jagur-Grodzinski and O. Kedem, Desalination 1, 327 (1966).CrossRefGoogle Scholar
  19. 19.
    U. Merten, Desalination by Reverse Osmosis, M.I.T. Press, Cambridge, Mass., 1966.Google Scholar
  20. 20.
    W. Banks and A. Sharples, The Mechanism of Desalination by Reverse Osmosis, and Its Relation to Membrane Structure, OSW Res. and Develop. Rep. No. 143, June 1965.Google Scholar
  21. 21.
    W. Pusch and R. Gröpl, Desalination 8, 277 (1970).CrossRefGoogle Scholar
  22. 22.
    W. Pusch, Reverse Osmosis Membrane Research, H. K. Lonsdale and H. K. Podall, editors, Plenum Publishing Corp., New York, 1972.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • W. Pusch
    • 1
  1. 1.Max-Planck-Institut für Biophysik6 Frankfurt am MainGermany

Personalised recommendations