The Sorption and Diffusion of Water in Polyurethane Elastomers

  • J. A. Barrie
  • A. Nunn
  • A. Sheer
Part of the Polymer Science and Technology book series (PST, volume 6)


The sorption and permeation of water has been measured at several temperatures for three polyurethane elastomers, namely, Adiprene CM with a polyether soft segment and Elastothane ZR625 and Genthane S both with polyester soft segments. The equilibrium sorption behaviour of all three materials is similar and the heat of dilution is zero, or close to zero, over most of the concentration range. The results indicate a comparatively strong interaction between the water and the polymer but the isotherms themselves do not exhibit significant Langmuir-type curvature at lower relative pressures. A Zimm-Lundberg analysis of the isotherms reveals that clustering of the sorbed water tends to dominate over most of the relative-pressure range. This is consistent with the observation that the diffusion coefficient, D, decreases with concentration for all three elastomers. The concentration dependence of D, bearing in mind the moderate water solubilities of these materials, is rather weak and the activation energy for diffusion is virtually constant. The results suggest that competing processes are operative which tend to oppose the effect of clustering on D.


Sorption Isotherm Silicone Rubber Soft Segment Cluster Function Sorbed Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Fujita, Fortschr. Hochpolym.-Forsch., 3, 1 (1961).CrossRefGoogle Scholar
  2. 2.
    D. Machin and C. E. Rogers,“The Concentration Dependence of Diffusion Coefficients in Polymer-Penetrant Systems”, C.R.C. Critical Reviews in Macromolecular Science, C.R.C. Publ. Cleveland, 1972.Google Scholar
  3. 3.
    J. A. Barrie, Diffusion in Polymers (J. Crank and G. Park eds.), Academic, New York, 1967.Google Scholar
  4. 4.
    J. A. Barrie and D. Machin, J. Macromol. Sci. - Phys., B3 (4), 645 (1969).CrossRefGoogle Scholar
  5. 5.
    N. S. Schneider, L. V. Dusablon, L.A. Spano and H.B. Hopfenberg, J. Appl. Polymer Sci., 12, 527 (1968).CrossRefGoogle Scholar
  6. 6.
    N. S. Schneider, L. V. Dusablon, E. W. Snell and R. A. Rosser, J. Macromol. Sci. - Phys., B3 (4), 623 (1969).CrossRefGoogle Scholar
  7. 7.
    Ludbrook, B., Thesis, University of London, (1972).Google Scholar
  8. 8.
    R. M. Barrer and J. A. Barrie, J. Polymer Sci., 28, 377 (1958).CrossRefGoogle Scholar
  9. 9.
    H. Yasuda and V. Stannett, J. Macromol. Sci. - Phys. B3(4),589 (1969).CrossRefGoogle Scholar
  10. 10.
    J. A. Barrie and D. Machin, J. Appl. Polymer Sci. 12, 2633 (1968).CrossRefGoogle Scholar
  11. 11.
    B. H. Zimm and Lundberg, J. Phys. Chem., 60, 425 (1956).CrossRefGoogle Scholar
  12. 12.
    J. Lundberg, Pure and Appl. Chem. 31, 261 (1972).CrossRefGoogle Scholar
  13. 13.
    G. J. van Amerongen, Rubber Chem. and Tech., 37, 1065 (1964).CrossRefGoogle Scholar
  14. 14.
    A. C. Newns and G. S. Park, J. Polymer Sci., C22, 927 (1969).Google Scholar
  15. 15.
    J. B. Alexopoulos, J. A. Barrie, J. C. Tye and M. Fredrickson, Polymer, London, 9, 57 (1968).Google Scholar
  16. 16.
    S. B. Clough and N. S. Schneider, J. Macromol. Sci., B2, 553 (1968).CrossRefGoogle Scholar
  17. 17.
    S. B. Clough, N. S. Schneider and A. O. King, J. Macromol. Sci., B2, 641 (1968).CrossRefGoogle Scholar
  18. 18.
    J. A. Barrie and D. Machin, Trans. Faraday Soc., 67, 244 (1971).CrossRefGoogle Scholar
  19. 19.
    A. Kishimoto, E. Maekawa and H. Fujita, Bull. Chem. Soc. Japan, 33, 988 (1960).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • J. A. Barrie
    • 1
  • A. Nunn
    • 1
  • A. Sheer
    • 1
  1. 1.Department of ChemistryImperial College of Science and TechnologyLondonUK

Personalised recommendations