Modification of Polymer Membrane Permeability by Graft Copolymerization

  • C. E. Rogers
  • S. Yamada
  • M. I. Ostler
Part of the Polymer Science and Technology book series (PST, volume 6)


The dependence of polymer membrane permeation properties on the nature of grafted polymer chain length, conformation, and domain formation have been elucidated using several membrane materials subjected to controlled graft copolymerization procedures. Improved permeation barrier characteristics of poly(isoprene-gmethylmethacrylate) to inert gas penetrants were found for short chain or densified graft domains as compared with long chain or extended domains. The permselectivity and degradation resistance of polyethylene-g-poly(potassium acrylate) membranes to ionic penetrants were considerably enhanced by surface plus internal grafting of polystyrene. The chemical nature, molecular weight, spatial distribution, and domain conformation of grafted copolymer are factors affecting membrane permeability which can be controlled by feasible variations in polymerization procedures.


Relative Permeability Graft Copolymer Membrane Material Silver Salt Chain Transfer Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Crank and G. S. Park, Eds., Diffusion in Powers, Academic Press, London, 1968.Google Scholar
  2. 2.
    C. E. Rogers, in Physics and Chemistry of the Orzanic Solid State, Vol. II., D. Fox, M. Labes, and A. Weissberger, Eds., Interscience, New York, 1965, Chapter 6.Google Scholar
  3. 3.
    D. Machin and C. E. Rogers, “The Concentration Dependence of Diffusion Coefficients in Polymer-Penetrant Systems”, CRC Critical Reviews in Macromolecular Sci., CRC Publ., Cleveland, April 1972.Google Scholar
  4. 4.
    C. E. Rogers, J. R. Semancik, and S. Kapur, Polymer Sci. Tech., 1, 297 (1973).Google Scholar
  5. 5.
    A. W. Myers, C. E. Rogers, V. Stannett, M. Szwarc, G. S. Patterson, A. S. Hoffman, and E. W. Merrill, J. Appl. Polym. Sci., 4, 159 (1960).CrossRefGoogle Scholar
  6. 6.
    J. L. Williams and V. Stannett, J. Appl. Polym. Sci., 14, 1949 (1970).CrossRefGoogle Scholar
  7. 7.
    H. B. Hopfenberg, V. Stannett, F. Kimura, and P. T. Rigney, Appl. Polym. Symp. No. 13, 139 (1970).Google Scholar
  8. 8.
    V. Stannett, H. B. Hopfenberg, and J. L. Williams, Polym. Sci., Tech., 1, 321 (1973).Google Scholar
  9. 9.
    R. Y. M. Huang and P. Kanitz, J. Appl. Polym. Sci., 13, 669 (1969); 15, 67 (1971).CrossRefGoogle Scholar
  10. 10.
    C. E. Rogers and S. Sternberg, J. Macromol. Sci., Phys., B5 (1), 189 (1971).CrossRefGoogle Scholar
  11. 11.
    F. M. Merrett, J. Polym. Sci., 24, 467 (1957).CrossRefGoogle Scholar
  12. 12.
    M. I. Ostler and C. E. Rogers, J. Appl. Polym. Sci., 18 (6), 1359 (1974).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • C. E. Rogers
    • 1
  • S. Yamada
    • 1
  • M. I. Ostler
    • 1
  1. 1.Department of Macromolecular ScienceCase Western Reserve UniversityClevelandUSA

Personalised recommendations