On the Generation of Novel Polymer Blend, Graft, and IPN Structures through the Application of Group Theory Concepts

  • L. H. Sperling
Part of the Polymer Science and Technology book series (POLS, volume 4)


Polymer blends, grafts, and blocks have achieved importance as toughened plastics and novel elastomers because of their complexity, not in spite of it. By definition, these materials are characterized as some intimate combination of two (or more) kinds of polymer molecules. Because of the very small entropy gain on mixing long polymer chains, and the usually encountered positive heat of mixing, most polymer blends, grafts, and blocks form two phases. Most strikingly in these materials, the exact mode of synthesis controls the two-phase morphological features, which in turn influences their mechanical behavior. Thus a one-to-one relationship exists between synthetic detail and potential application.


Block Copolymer Graft Copolymer Polymer Blend Linear Polymer Inversion Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. G. Chinn and N. E. Steenrod, “First Concepts of Topology” Random House, 1966.Google Scholar
  2. 2.
    W. B. Temple, Makromol. Chem., 160, 277 (1972).CrossRefGoogle Scholar
  3. 3.
    O. Ore, “Graphs and their Uses”, Random House, 1963.Google Scholar
  4. 4.
    D. McLachlan, Jr., “X-Ray Crystal Structure”, McGraw Hill, 1957.Google Scholar
  5. 5.
    F. A. Cotton, “Chemical Applications of Group Theory”, 2nd Ed., Wiley Interscience, 1971.Google Scholar
  6. 6.
    A. J. Mabis, Acta Cryst., 15, 1152 (1962).CrossRefGoogle Scholar
  7. 7.
    C. Hermann, Z. Kristallog., 79, 186, 337 (1931).Google Scholar
  8. 8.
    E. Artin, American Scientist, 38, 112 (1950).Google Scholar
  9. 9.
    P. F. Bruins, Ed., “Polyblends and Composites”, Interscience, 1970. J. Appl. Polym. Sci. Applied Polymer Symposia No. 15.Google Scholar
  10. 10.
    H. Keskkula, Ed., “Polymer Modification of Rubbers and and Plastics”, Interscience, 1968. J. Appl. Polym. Sci. Applied Polymer Symposia No. 7.Google Scholar
  11. 11.
    J. E. Work, Polym. Eng. Sci., 13, 46 (1973).CrossRefGoogle Scholar
  12. 12.
    G. E. Molau, Ed., “Colloidal and Morphological Behavior of Block and Graft Copolymers”, Plenum, 1971.Google Scholar
  13. 13.
    N. A. J. Platzer, Chmn., “Multicomponent Polymer Systems”, Adv. Chem. Series No. 99, ACS, 1971.CrossRefGoogle Scholar
  14. 14.
    Graft Copolymer Symposium, V. Stannett, Chairman, American Chemical Society meeting, New York, August, 1972.Google Scholar
  15. 15.
    J. A. Manson and L. H. Sperling, “Polymer Blends and Composites, Broadly Defined”, Plenum, in Press.Google Scholar
  16. 16.
    S. L. Aggarwal, Ed., “Block Polymers”, Plenum, 1970.Google Scholar
  17. 17.
    J. Moacanin, G. Holden, and N. W. Tschoegl, Eds., “Block Copolymers”, Interscience, 1969. J. Polymer Sci. 26C.Google Scholar
  18. 18.
    M. Szwarc, Polym. Eng. Sci., 13, 1 (1973).CrossRefGoogle Scholar
  19. 19.
    F. W. Billmeyer, Jr., “Textbook of Polymer Science”, 2nd Ed., Interscience, 1971.Google Scholar
  20. 20.
    J. Furukawa, Y. Iseda, and E. Kobayashi, Polym. J., 2, 377 (1971).Google Scholar
  21. 21.
    J. Furukawa, Angew. Makro. Chem., 23, 189 (1972)CrossRefGoogle Scholar
  22. 21a.
    J. Furukawa, Rubber Chem. Tech., 45, 1532 (1972).CrossRefGoogle Scholar
  23. 22.
    J. P. Kennedy and F. P. Baldwin, Fr. 1, 564, 485Google Scholar
  24. 22a.
    J. P. Kennedy and F. P. Baldwin, Chem. Abs., 71, 102926g (1969).Google Scholar
  25. 23.
    J. P. Kennedy, presented at the XXII IUPAC meeting, Boston, Mass., July, 1971, Preprints, Vol. 1, p. 105.Google Scholar
  26. 24.
    D. J. Lyman, Revs. Macromol. Chem., 1, 355 (1966).CrossRefGoogle Scholar
  27. 25.
    I. H. Silman and E. Katchalski, Ann. Rev. Biochem., 35, 873 (1966).CrossRefGoogle Scholar
  28. 25a.
    S. L. Rosen, J. Appl. Polym. Sci., 17, 1805 (1973).CrossRefGoogle Scholar
  29. 26.
    M. Matsuo, Japan Plastics, 2, 6 (July, 1968).Google Scholar
  30. 27.
    K. Kato, Japan Plastics, 2, 6 (April, 1968).Google Scholar
  31. 28.
    Volker Huelck, D. A. Thomas, and L. H. Sperling, Macromolecules, 5, 340, 348 (1972).CrossRefGoogle Scholar
  32. 29.
    A. J. Curtius, M. J. Covitch, D. A. Thomas, and L. H. Sperling, Polym. Eng. and Sci., 12, 101 (1972).CrossRefGoogle Scholar
  33. 30.
    L. H. Sperling and R. R. Arnts, Note, J. Appl. Polym. Sci., 15, 2371 (1971).CrossRefGoogle Scholar
  34. 31.
    B. Vollmert, U. S. 3,005,859 (1962).Google Scholar
  35. 32.
    G. Odian and B. S. Bernstein, Nucleonics, 21, 80 (1963).Google Scholar
  36. 33.
    R. H. Kinsey, Appl. Polym. Symp., 11, 77 (1969).Google Scholar
  37. 34.
    A. Eisenberg, Macromol., 3, 147 (1970).CrossRefGoogle Scholar
  38. 35.
    E. P. Otocka and T. K. Kwei, Macromol., 2, 244, 401 (1968).CrossRefGoogle Scholar
  39. 36.
    A. V. Tobolsky, P. F. Lyons, and N. Hata, Macromol., 1, 515 (1968).CrossRefGoogle Scholar
  40. 37.
    C. H. Bamford, G. C. Eastmond, and D. Whittle, Polymer, 12, 247 (1971).CrossRefGoogle Scholar
  41. 38.
    L. H. Sperling and H. D. Sarge III, J. Appl. Polym. Sci., 16, 3041 (1972).CrossRefGoogle Scholar
  42. 38a.
    B. Vollmert and H. Stutz, Angew. Makromol. Chemie, 20, 71 (1971).CrossRefGoogle Scholar
  43. 39.
    M. Shen and M. B. Bever, J. Mats. Sci., 7, 741 (1972).CrossRefGoogle Scholar
  44. 40.
    S. L. Rosen, Polym. Eng. Sci., 7, 115 (1967).CrossRefGoogle Scholar
  45. 41.
    E.H. Merz, G. C. Claver, and M. Baer, J. Polym. Sci., 22, 325 (1956).CrossRefGoogle Scholar
  46. 42.
    D. Klempner, H. L. Frisch, and K. C. Frisch, J. Polym. Sci., A-2, 8, 921 (1970).Google Scholar
  47. 43.
    M. Matsuo, T. K. Kwei, D. Klempner, and H. L. Frisch, Polym. Eng. Sci., 10, 327 (1970).CrossRefGoogle Scholar
  48. 44.
    R. B. Mumford and J. L. Nevin, Modem Textiles, April, (1967).Google Scholar
  49. 45.
    J. Zimmerman, U. S. 3,393,252 (1968).Google Scholar
  50. 46.
    H. A. Clark, U. S. 3,527,842 (1970).Google Scholar
  51. 47.
    W. Magnus, A. Karass, and D. Solitar, “Combinatorial Group Theory”, Interscience, 1966.Google Scholar
  52. 48.
    S. L. Aggarwal, presented before the American Physical Society meeting, February, 1969, Philadelphia, Pa.Google Scholar
  53. 49.
    O. B. Johnson and S.S. Labana, U. S. 3,659,003 (1972).Google Scholar
  54. 50.
    J. N. Weinstein, B. M. Misra, D. Kalif, and S. R. Caplan, Desalination, 12, 1 (1973).CrossRefGoogle Scholar
  55. 51.
    A. J. Kovacs, J. A. Manson, and D. Levy, Kolloid-Z., 214, 1 (1966).CrossRefGoogle Scholar
  56. 52.
    H. J. Hagenmeyer, Jr., and M. B. Edwards, J. Polym. Sci., 4C, 731 (1966).Google Scholar
  57. 53.
    M. Matzner, D. L. Schober, and J. E. McGrath, European Polym. J., 9 469 (1973).CrossRefGoogle Scholar
  58. 54.
    B. Baumslag and B. Chandler, “Theory and Problems of Group Theory.” McGraw-Hill, 1968.Google Scholar
  59. 55.
    G. J. Mantell, U. S. 2,837,512 (1958).Google Scholar
  60. 56.
    J. L. Gardon, J. Appl. Polym. Sci., 5, 734 (1961).CrossRefGoogle Scholar
  61. 57.
    J. L. Gardon, J. Polym. Sci., A, 2, 2657 (1964).Google Scholar
  62. 58.
    J. L. Gardon, U. S. 3,125,405 (1964).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • L. H. Sperling
    • 1
  1. 1.Materials Research CenterLehigh UniversityBethlehemUSA

Personalised recommendations