Time-Temperature Superposition in Two-Phase Polyblends

  • D. Kaplan
  • N. W. Tschoegl
Part of the Polymer Science and Technology book series (POLS, volume 4)


The temperature dependence of the mechanical properties of a 50/50 blend of PVAC and lightly crosslinked PMMA has been examined using the data of Kawai et al. The shift distances, log aT, were generated by bringing the experimental data into coincidence on master curves calculated from a Takayanagi model whose parameters were varied in different regions of temperature. This method allows one to construct a master curve for a thermorheologically complex two-phase material if the model and the mechanical properties of the constituent phases and their temperature dependence is known. The shift distances then provide insight into the intricate relations between the time and temperature dependence of the mechanical properties of the composite.


Block Copolymer Reference Temperature Phase Material Change Master Curve Shift Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Ferry, Viscoelastic Properties of Polymers, 2nd ed., Chapter 11; Wiley, 1970.Google Scholar
  2. 2.
    D. G. Fesko and N. W. Tschoegl, J. Polymer Sci., Part C, No. 35, pp. 51–69(1971).Google Scholar
  3. 3.
    D. G. Fesko and N. W. Tschoegl, submitted to Intern. J. Polymeric Mater.Google Scholar
  4. 4.
    C. K. Lim, R. E. Cohen, and N. W. Tschoegl, Adv. Chem. 99:397 (1971).CrossRefGoogle Scholar
  5. 5.
    T. Horino, Y. Ogawa, T. Soen, and H. Kawai, J. Appl. Polym. Sci. 9:2261 (1965).CrossRefGoogle Scholar
  6. 6.
    K. Fujino, Y. Ogawa, and H. Kawai, J. Appl. Polym. Sci. 8:2147 (1964).CrossRefGoogle Scholar
  7. 7.
    M. Takayanagi, S. Uemura, and S. Minami, J. Polym. Sci. Part C, No. 5, pp. 113–122 (1964).Google Scholar
  8. 8.
    E. H. Kerner, Proc. Phys. Soc. (London) B 69:808 (1956).CrossRefGoogle Scholar
  9. 9.
    Z. Hashin and S. Shtrikman, J. Mech. Phys. Solids 11:127(1963).CrossRefGoogle Scholar
  10. 10.
    J. E. Ashton, J. H. Halpin, and P. H. Petit, Primer on Composite Materials: Analysis, Chapter 5, Technomics, Stamford, Conn. (1969).Google Scholar
  11. 11.
    L. E. Nielsen, Proc. 6th Int. Congress Rheol., 1972.Google Scholar
  12. 12.
    R. A. Dickie, J. App. Polym. Sci. 17:45 (1973).Google Scholar
  13. 13.
    M. Matsuo, T. K. Kwei, D. Klempner, and H. L. Frisch, Polymer Eng. and Sci. 10:327 (1972).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • D. Kaplan
    • 1
  • N. W. Tschoegl
    • 1
  1. 1.Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations