Butadiene-Styrene AB Type Block Copolymers

  • G. Kraus
  • H. E. Railsback
Part of the Polymer Science and Technology book series (POLS, volume 4)


Few recent developments in polymer science have created more interest than the discovery of the so-called “thermoplastic elastomers”, block copolymers of the general structure AnBmAn, wherein A is a monomer whose polymer is glassy at ordinary temperatures, while monomer B forms a rubbery center block. These materials owe their unique properties to immiscibility of the two kinds of block sequences. The result is a two-phase domain structure in which the glassy domains assume the role of both crosslinks and reinforcing filler particles for the rubbery matrix composed of the center blocks. Thus, at ambient temperature the polymers resemble vulcanized, filler reinforced rubbers in reversible extensibility and strength. Above the glass transition of the A-blocks flow becomes possible — the polymers are true thermoplastics. The first, and most extensively investigated, polymers of this kind are those in which A is styrene and B is butadiene or isoprene.


Block Copolymer Random Copolymer Block Polymer Pressure Sensitive Adhesive Styrene Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. (1).
    R. P. Zelinski and C. W. Childers, Rubber Chem. Tech., 41, 161 (1968).CrossRefGoogle Scholar
  2. (2).
    I. M. Kolthoff, T. S. Lee and C. W. Carr, J. Polymer Sci., 1, 429 (1946).CrossRefGoogle Scholar
  3. (3).
    M. Matsuo, T. Ueno, H. Horino, S. Chujo and H. Asai, Polymer, 2, 425 (1968).CrossRefGoogle Scholar
  4. (4).
    M. Matsuo, S. Sagae and H. Asai, Polymer, 10, 79 (1969).CrossRefGoogle Scholar
  5. (5).
    T. Inoue, T. Soen, T. Hashimoto and H. Kawai, J. Polymer Sci. A-2, 8, 1283 (1969).CrossRefGoogle Scholar
  6. (6).
    T. Uchida, T. Soen, T. Inoue and H. Kawai, J. Polymer Sci. A-2, 10, 101 (1972).CrossRefGoogle Scholar
  7. (7).
    T. Soen, T. Inoue, M. Miyoshi and H. Kawai, J. Polymer Sci. A-2, 10, 1757 (1972).CrossRefGoogle Scholar
  8. (8).
    G. Kraus and J. T. Graver, J. Appl. Polymer Sci., 11, 2121 (1967).CrossRefGoogle Scholar
  9. (9).
    J. T. Gruver and G. Kraus, J. Polymer Sci. A, 2, 797 (1964).Google Scholar
  10. (10).
    D. J. Plazek, J. Phys. Chem., 62, 3480 (1965).CrossRefGoogle Scholar
  11. (11).
    G. Holden, E. T. Bishop and N. R. Legge, J. Polymer Sci. C, 26, 37 (1969).Google Scholar
  12. (12).
    G. Kraus, C. W. Childers and J. T. Gruver, J. Appl. Polymer Sci., 11, 1581 (1967).CrossRefGoogle Scholar
  13. (13).
    M. Gordon and J. S. Taylor, J. Appl. Chem., 2, 493 (1952).CrossRefGoogle Scholar
  14. (14).
    G. Kraus, K. W. Rollman and J. O. Gardner, J. Polymer Sci. A-2, 10, 2061 (1972).Google Scholar
  15. (15).
    J. F. Beecher, L. Marker, R. D. Bradford and S. L. Aggarwal, J. Polymer Sci., C, 26, 117 (1969).Google Scholar
  16. (16).
    D. H. Kaelble, Trans. Soc. Rheol., 15, 235 (1971).CrossRefGoogle Scholar
  17. (17).
    M. Morton, ACS Advances in Chemistry Series, 22, 490 (1971).Google Scholar
  18. (18).
    W. W. Crouch and J. N. Short, Rubber and Plastics Age, 42, 276 (1961).Google Scholar
  19. (19).
    H. E. Railsback, C. C. Biard, J. R. Haws and R. C. Wheat, Rubber Age, 94, 583 (1964).Google Scholar
  20. (20).
    H. E. Railsback, C. C. Biard, J. R. Haws and R. C. Wheat, Rubber Age, 93, No. 2, 303 (1963).Google Scholar
  21. (21).
    H. E. Railsback and G. Porta, Materie Piastiche et Elastomeri, 35, 63 (1969).Google Scholar
  22. (22).
    O. L. Marrs, F. E. Naylor and L. O. Edmonds, Journal of Adhesion, 4, 211 (1972).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • G. Kraus
    • 1
  • H. E. Railsback
    • 1
  1. 1.Research and Development DepartmentPhillips Petroleum CompanyBartlesvilleUSA

Personalised recommendations