Nutrition of Natural Enemies

  • H. L. House
Part of the Environmental Science Research book series (ESRH, volume 11)


Because parasitoids 1/ are living animals, nutrition inevitably plays an important role in augmenting these natural enemies of pests. For nutrition is about nourishment; that is, it is the action or processes of transforming substances found in foodstuff into body materials and energy to do all the things attributed to life. Nutritional requirements depend on the synthetic abilities of the organism and the basis is genetical. Therefore, through nutrition we have a direct and essential connexion between an environmental factor, foodstuff, and the vital processes of the insect organism.


Natural Enemy Artificial Diet Nutritional Requirement Amino Acid Requirement Parasitoid Larva 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Albritton, E. C. ed. 1954. In Standard Values in Nutrition and Metabolism, pp. 21–30. Philadelphia: Saunders. 380 pp.Google Scholar
  2. Altman, P. L., and D. S. Dittmer. ed. 1968. In Metabolism, pp. 148–63. Washington: Fed. Am. Soc. Exp. Biol. 737 pp. Altman, P. L., and D. S. Dittmer. ed. 1974. In Biology Data Book, vol. Ill, pp. 1433’75. Bethesda: Fed. Am. Soc. Exp. Biol. 690 pp.Google Scholar
  3. Atallah, Y. H., and R. Killebrew. 1967. Ecological and nutritional studies on Coteomegitla maoulata (Coleoptera:Coccinellidae). IV. Amino acid requirements of the adults determined by the use of C1I+-labelled acetate. Ann. Entomol. Soc. Am. 60: 186–188.PubMedGoogle Scholar
  4. Atwal, A. S., and S. L. Sethi. 1963. Biochemical basis for the food preference of a predator beetle. Current Sci. (India) 11: 511–512.Google Scholar
  5. Beck, S. D. 1972. Nutritional aspects of pest management. In Insect and Mite Nutrition, ed. J. G. Rodriguez, pp. 555–6. Amsterdam: North-Holland. 702 pp.Google Scholar
  6. Beirne, B. P. 1962. Trends in applied biological control of in–sects. Ann. Rev. Entomol. 7: 387–400.CrossRefGoogle Scholar
  7. Boiler, E. 1972. Behavioral aspects of mass–rearing of insects. Entomophaga 17: 9–25.CrossRefGoogle Scholar
  8. Bracken, G. K. 1965. Effects of dietary components on fecundity of the parasitoid Exeristes comstockii (Cress.) (Hymenoptera: Ichneumonidae). Can. Entomol. 97: 1037–1041.CrossRefGoogle Scholar
  9. Bracken, G. K. 1966. Role of ten dietary vitamins on fecundity of the parasitoid Exeristes eomstockii (Cresson) (Hymenoptera: Ichneumonidae). Can. Entomol. 98: 918–922.CrossRefGoogle Scholar
  10. Brambell, M. R. 1972. Mammals: their nutrition and habitat. In Biology of Nutrition, ed. R.N. T–W–Fiennes, 18:613–48. International Encyclopaedia of Food and Nutrition. Oxford: Pergamon. 681 pp.Google Scholar
  11. Brues, C. T. 1946. Insect Dietary; an Account of the Food Habits of Insects, Cambridge: Harvard. 466 pp.Google Scholar
  12. Couch, J. R. 1967. Nutritional requirements (vertebrates other than mammals). In The Encyclopedia of Biochemistry, ed. R. J. Williams and E. M. Lansford, Jr., pp. 604–606. New York: Reinhold. 876 pp.Google Scholar
  13. Dadd, R. H. 1973. Insect nutrition: current developments and metabolic implications. Ann. Rev. Entomol. 18: 381–420.CrossRefGoogle Scholar
  14. Davis, G. R. F. 1966. Replacement of RNA in the diet of Oryzae– philus surinamensis (L.)(Coleoptera:Silvanidae) by purines, pyrimidines, and ribose. Can. J. Zool. 44: 781–785.PubMedCrossRefGoogle Scholar
  15. Davis, G. R. F. 1967. Effects of dietary lipids on survival and development of the saw–toothed grain beetle, Oryzaephilus suri–namensis (L.) (Coleoptera:Silvanidae). Revue Can. Biol. 26: 119–124.Google Scholar
  16. Dethier, V. G. 1947. Chemical Insect Attractants and Repellents. Philadelphia: Blakiston. 289.Google Scholar
  17. Dethier, V. G. 1970. Chemical interactions between plants and insects. In Chemical Ecology, ed. E. Sondheimer and J. B. Simeone, pp. 83–102. New York: Academic. 336 pp.Google Scholar
  18. Evans, A. C. 1939. The utilization of food by certain lepidopterous larvae. Trans. Roy. Entomol. Soc. London (A) 89: 13–22.CrossRefGoogle Scholar
  19. Gordon, H. T. 1959. Minimal nutritional requirements of the German roach, Blattella germanica L. Ann. N.Y. Acad. Sci. 77: 290–351.CrossRefGoogle Scholar
  20. Hagen, K. S. 1950. Fecundity of Chrysopa californica as affected by synthetic foods. J. Econ. Entomol. 43: 101–4.Google Scholar
  21. Hagen, K. S., and R. Hale. 1974. Increasing natural enemies through use of supplementary feeding and non–target prey. In Proceedings of the Summer Institute on Biological Control of Plant Insects and Diseases, ed. F. G. Maxwell and F. A. Harris, pp. 170–181. Jackson: Mississippi.Google Scholar
  22. Hagen, K. S., and R. L. Tassan. 1966. The influence of protein hydrolysates of yeast and chemically–defined diets upon the fecundity of Chrysopa cornea Stephens (Neuroptera). Vestnik. Cs. Spol. Zool. 30: 219–27.Google Scholar
  23. Hagen, C. S., and R. L. Tassan. 1970. The influence of Food Wheast and related Saooharomyoes fragilis yeast products on the fecund ity of Chrysopa oamea (Neuroptera:Chrysopidae). Can. Entomol. 102: 806–11.CrossRefGoogle Scholar
  24. Hagen, K. S., and R. L. Tassan. 1972. Exploring nutritional roles of extra cellular symbiotes on the reproduction of honeydew feeding adult chrysopids and tephritids. In Insect and Mite Nutrition, ed. J. G. Rodriguez, pp. 223–351. Amsterdam: North–Holland. 702 pp.Google Scholar
  25. Hagen, K. S., E. F. Sawall, Jr., and R. L. Tassan. 1971. The use of food sprays to increase effectiveness of entomophagous insects. Proc. Tall Timbers Conf. Ecol. Anim. Contr. Habitat Mange. 2: 59–81 (Tall Timbers Res. Sta., Tallahassee, Fla.)Google Scholar
  26. House, H. L. 1954a. Nutritional studies with Pseudosaroophaga affinis (Fall.), a dipterous parasite of the spruce budworm, Choristoneura fumiferana (Clem.). I. A chemically defined medium and aseptic–culture technique. Can. J. Zool. 32: 331–41.Google Scholar
  27. House, H. L. 1954b. Nutritional studies with Pseudosaroophaga affinis (Fall.), a dipterous parasite of the spruce budworm, Choristoneura fumiferana (Clem.). III. Effects of nineteen amino acids on growth. Can. J. Zool. 32: 351–7.CrossRefGoogle Scholar
  28. House, H. L. 1954c. Nutritional studies with Pseudosaroophaga affinis (Fall.), a dipterous parasite of the spruce budworm, Choristoneura fumiferana (Clem.). IV. Effects of ribonucleic acid, glutathione, dextrose, a salt mixture, cholesterol, and fats. Can. J. Zool. 32: 358–65.CrossRefGoogle Scholar
  29. House, H. L. 1958. Nutritional requirements of insects associated with animal parasitism. Exp. Parasit. 7: 555–609.PubMedCrossRefGoogle Scholar
  30. House, H. L. 1963. Nutritional diseases. In Insect Pathology, ed. E. A. Steinhaus, 1: 133–60. New York: Academic. 661 pp.Google Scholar
  31. House, H. L. 1964. Effects of dietetic nucleic acids and components on growth of Agria affinis (Fallen) (Diptera:Sarcopha– gidae). Can. J. Zool. 42: 801–6.CrossRefGoogle Scholar
  32. House, H. L. 1965a. Effects of vitamiii A acetate and structurally related substances on growth and reproduction of Agria affinis (Fallen) (Diptera:Sarcophagidae). J. Insect Physiol. 11: 1039–45.PubMedCrossRefGoogle Scholar
  33. House, H. L. 1965b. Effects of low levels of the nutrient content of a food and of nutrient imbalance on the feeding and the nutrition of phytophgous larva, Celerio euphorbiae (Linnaeus)(Lepidoptera:Sphingidae). Can. Entomol. 97: 62–8.CrossRefGoogle Scholar
  34. House, H. L. 1966a. The role of nutritional principles in biological control. Can. Entomol. 98: 1121–34.CrossRefGoogle Scholar
  35. House, H. L. 1966b. Effects of varying the ratio between the amino acids and the other nutrients in conjuction with a salt mixture on the fly Agria af finis (Fall.). J. Insect Physiol. 12: 299–310.CrossRefGoogle Scholar
  36. House, H. L. 1966c. Effects of vitamins E and A on growth and development, and the necessity of vitamin E for reproduction in the parasitoid Agria affinis (Fallen) (Diptera:Sarco– phagidae). J. Insect Physiol. 12: 409–17.Google Scholar
  37. House, H. L. 1966d. Effect of temperature on the nutritional requirements of an insect, Pseudosarcophaga affinis Auct. nec Fallen (Diptera:Sarcophagidae), and its probably eco–logical significance. Ann. Entomol. Soc. Am. 59: 1263–67.Google Scholar
  38. House, H. L. 1967a. Artificial Diets for Insects: a Compilation of References with Abstracts. Inform. Bull. No. 5, Res. Inst., Can. Dept. Agr., Belleville, Ont. 163 pp.Google Scholar
  39. House, H. L. 1967b. The role of nutritional factors in food selection and preference as related to larval nutrition of an insect, Pseudosarcophaga affinis (Diptera:Sarcophagidae), on synthetic diets. Can. Entomol. 99; 1310–21.CrossRefGoogle Scholar
  40. House, H. L. 1969. Effects of different proportions of nutrients on insects. Entomol. Exp. Appl. 12: 651–69.CrossRefGoogle Scholar
  41. House, H. L. 1970. Choice of food by larvae of the fly, Agria affinis9 related to dietary proportions of nutrients. J. Insect Physiol. 16: 2041–50.CrossRefGoogle Scholar
  42. House, H. L. 1971a. Changes from initial food choice in a fly larva, Agria affinis, as related to dietary proportions of nutrients. J. Insect Physiol. 17: 1051–59.CrossRefGoogle Scholar
  43. House, H. L. 1971b. Relations between dietary proportions of nutrients, growth rate, and choice of food in the fly larva Agria affinis. J. Insect Physiol. 17: 1225–38.CrossRefGoogle Scholar
  44. House, H. L. 1972a. Insect nutrition. In Biology of Nutrition, ed. R.N. T-W-Fiennes, 18:513–73. International Encyclopaedia of Food and Nutrition. Oxford: Pergamon. 681 pp.Google Scholar
  45. House, H. L. 1972b. Inversion in the order of food superiority between temperatures affected by nutrient balance in the fly larva Agria housei (Diptera:Sarcophagidae). Can. Entomol. 104: 1559–64.CrossRefGoogle Scholar
  46. House, H. L. 1974. Nutrition. In The Physiology of Insecta, ed. M. Rockstein, 5: 1–62. New York: Academic. 648 pp.Google Scholar
  47. House, H. L. 1976. Interaction between amino acids and glucose in larval nutrition of the fly Agria housei Shewell at low temperature. Can. Entomol. In press.Google Scholar
  48. House H. L., and J. S. Barlow. 1956. Nutritional studies with Pseudosarcophaga af finis (Fall.), a dipterous parasite of the spruce budworm, Choristoneura fumiferana (Clem.) V. Effects of various concentrations of the amino acid mixture, dextrose, potassium ion, the salt mixture, and lard on growth and development; and a substitute for lard. Can. J. Zool. 34: 182–9.CrossRefGoogle Scholar
  49. House, H. L., and J. S. Barlow. 1960. Effects of oleic and other fatty acids on the growth rate of Agria affinis (Fall.) (Dip–tera: Sarcophagidae). J. Nutr. 72: 409–14.Google Scholar
  50. House, H. L., and J. S. Barlow. 1961. Effects of different diets of a host, Agria affinis (Fall.) (Diptera:Sarcophagidae), on the development of a parasitoid, Aphaereta pallipes (Say) (Hymenoptera:Braconidae). Can. Entomol. 93: 1041–4.CrossRefGoogle Scholar
  51. House, H. L., and J. S. Barlow. 1965. Effects of a new salt mixture developed for Agria affinis (Fallén) (Diptera:Sarcophagidae) on the growth rate, body weight, and protein content of the larvae. J. Insect Physiol. 11: 915–8.CrossRefGoogle Scholar
  52. House, H. L., D. F. Riordan, and J. S. Barlow. 1958. Effects of thermal conditioning and of degree of saturation of dietary lipids on resistance of an insect to a high temperature. Can. J. Zool. 36: 629–32.CrossRefGoogle Scholar
  53. House, H. L., Pritam Singh, and W. W. Batsch. 1971. Artificial Diets: Compilation of References with Abstracts. Inform. Bull. No. 7, Res. Inst., Can. Dept. Agr., Belleville, Ont. 156 pp.Google Scholar
  54. Hoy, M. A. 1975. Improving the quality of laboratory–reared insects. J. N. Y. Entomol. Soc. 83: 276–7.Google Scholar
  55. Kajita, H. 1973. Rearing of Apanteles chitonis Munakata on the rice stem borer, Chito suppressalis Walker, bred on a semi– artificial diet. Jpn. J. Appl. Entomol. Zool. 17: 5–9.CrossRefGoogle Scholar
  56. Legay, J. M. 1958. Recent advances in silkworm nutrition. Ann. Rev. Entomol. 3: 75–86CrossRefGoogle Scholar
  57. Leius, K. 1960. Attractiveness of different foods and flowers to the adults of some hymenopterous parasites. Can. Entomol. 92: 369–76.CrossRefGoogle Scholar
  58. Leius, K. 1961a. Influence of food on fecundity and longevity of adults of Itopleotis oonquisitor (Say) (Hymenoptera: Ichneumonidae). Can. Entomol. 93: 771–80.CrossRefGoogle Scholar
  59. Leius, K. 1961b. Influence of various foods on fecundity and longevity of adults of Soarribus buolianae (Htg.) (Hymenoptera: Ichneumonidae). Can. Entomol. 93: 1079–84CrossRefGoogle Scholar
  60. Leius, K. 1967a. Influence of wild flowers on parasitism of tent caterpillar and codling moth. Can. Entomol. 99: 444–6.CrossRefGoogle Scholar
  61. Leius, K. 1967b. Food sources and preferences of adults of a parasite, Soambus buolianae (Hym.:Echn.), and their con–sequences. Can. Entomol. 99: 865–71CrossRefGoogle Scholar
  62. Levinson, Z. H. 1955. Nutritional requirements of insects. Riv. Parassitol. 16:113–138, 183–204.Google Scholar
  63. Mackauer, M. 1976. Genetic problems in the production of bio–logical control agents. Ann. Rev. Entomol. 21: 369–85.CrossRefGoogle Scholar
  64. Mathai, S. 1972. Studies on the effect of host nutrition on Bracon brevieornis Wesmael. Agr. Res. J. Kerala (1971) 9: 1–3.Google Scholar
  65. Maynard, L. A., and J. K. Loosli. 1962. Animal Nutrition. New York: McGraw-Hill. 533 pp.Google Scholar
  66. Morrison, F. B. 1941. Feeds and Feeding, Abridged. Ithaca: Morrison. 503 pp.Google Scholar
  67. Pratt, J. J. Jr., H. L. House, and A. Mansingh. 1972. Insect control strategies based on nutritional principles: a prospectus. In Insect and Mite Nutrition, ed. J. G. Rodriguez, pp. 651–68. Amsterdam: North-Holland. 702 pp.Google Scholar
  68. Sang, J. H. 1956a. The quantitative nutritional requirements of Drosophila melanogaster. J. Exp. Biol. 33: 45–72.Google Scholar
  69. Sang, J. H. 1956b. Differences in the nutritional requirements of D. melanogaster and the relation to heterosis. Proc. Int. Congr. Genet., 9th, 1953, Caryologia, Florence suppl. (1954) 6: 818–21.Google Scholar
  70. Sang, J. H. 1957. Utilization of dietary purines and pyrimidines by Drosophila melanogaster. Proc. Roy. Soc. Edinburgh 66: 339–59.CrossRefGoogle Scholar
  71. Sang, J. H. 1959. Circumstances affecting the nutritional requirements of Drosophila melanogaster. Ann. N. Y. Acad. Sci. 77: 352–65.CrossRefGoogle Scholar
  72. Sang, J. H. 1962. Relationship between protein supplies and B– vitamin requirements in axenically cultured Drosophila. J. Nutr. 77: 355–68.PubMedGoogle Scholar
  73. Schoenheimer, R. 1942. The Dynamic State of the Body Constituents. Cambridge: Harvard. 78 pp.Google Scholar
  74. Shteinberg, D. M. 1955. Some aspects of the problem of adoption of entomophagous and phytophagous insects to their nutrition [in Russian]. Trans. Zool. Inst. Acad. Sci. U.S.S.R. 21:36– 43. ( Translation by E. R. Hope, Directorate of Scientific Information Service, Defense Research Board, Ottawa, Canada ).Google Scholar
  75. Singh, Pritam. 1974. Artificial Diets for Insects: a Compilation of References with Abstracts (1970–72). Bull. No. 214, N. Z. Dept. Sci. Ind. Res., Entomol. Div., Auckland, N.Z.Google Scholar
  76. Smith, C. C. 1965. Differences in Anatis mali Auct. and Coleomegilla maoulata lengi Timberlake to changes in the quality and quantity of the larval food (Coleoptera: Coccinellidae). Can. Entomol. 97: 1159–66.CrossRefGoogle Scholar
  77. Smith, J. M. 1957. Effects of the food plant of California red scale, Aonidiella aurantii (Mask.) on reproduction of its hymenopterous parasites. Can. Entomol. 89: 219–30.CrossRefGoogle Scholar
  78. Snodgrass, R. E. 1961. The Caterpillar and the Butterfly. Smithsonian Inst. Misc. Collect. 143: 1–51.Google Scholar
  79. Soo-Hoo, C. F., and G. Fraenkel. 1966. The consumption, digestion, and utilization of food plants by a polyphagous insect, Prodenia eridania (Cramer). J. Insect Physiol. 12: 711–30.CrossRefGoogle Scholar
  80. Tauber, M. J., and C. A. Tauber. 1974. Dietary influence on reproduction in both sexes of five predaceous species (Neuroptera). Can. Entomol. 106: 921–5.CrossRefGoogle Scholar
  81. Thompson, S. N. 1975. Defined meridic and holidic diets and aseptic feeding procedures for artificially rearing the ectoparasitoid Exeristes roborator (Fabricius). Ann. Entomol. Soc. Am. 68: 220–6.Google Scholar
  82. Thompson, S. N. 1976a. The amino acid requirements for larval development of the hymenopterous parasitoid Exeristes roborator Fabricius (Hymenoptera:Ichneumonidae). Cотр. Biochem. Physiol. 53A: 211–3.CrossRefGoogle Scholar
  83. Thompson, S. N. 1976b. Effects of dietary amino acid level and nutritional balance on larval survival and development of the parasite Exeristes roborator. Ann. Entomol. Soc. Am. 69: 835–8.Google Scholar
  84. Тyppo J. T and G. M. Briggs. 1967. Nutritional requirements (mammals). In The Encyclopedia of Biochemistry, ed. R. J. Williams and E. M. Lansford, Jr., pp. 600–4. New York: Reinhold. 876 pp.Google Scholar
  85. Uvarov, B. P. 1929. Insect nutrition and metabolism. Trans. Entomol. Soc. London 76 (2): 255–343.CrossRefGoogle Scholar
  86. Vanderzant, E. S. 1968. Synthetic diets: insects. In Metabolism, ed. P. L. Altman and D. S. Dittmer, pp. 163–7. Washington: Fed. Am. Soc. Exp. Biol. 737 pp.Google Scholar
  87. Vanderzant, E. S. 1973. Improvements in the rearing diet for Chryeopa oamea and the amino acid requirements for growth. J. Econ. Entomol. 66: 336–8.Google Scholar
  88. Vanderzant, E. S. 1974. Development, significance, and application of artificial diets for insects. Ann. Rev. Entomol. 19: 139–60.CrossRefGoogle Scholar
  89. Waldbauer, G. P. 1964. The consumption, digestion and utilization of solanaceous and non–solanaceous plants by larvae of the tobacco hornworm, Protoparee sexta (Johan.) (Lepidoptera: Sphingidae). Entomol. Exp. Appl. 7: 253–69.CrossRefGoogle Scholar
  90. Waldbauer, G. P. 1968. The consumption and utilization of foods by insects. Advan. Insect Physiol. 5: 229–88.CrossRefGoogle Scholar
  91. White, E. C., P. DeBach, and M. J. Garber. 1970. Artificial selection to temperature extremes in Aphytis tingnanensis Compere (Hymenoptera:Aphelinidae). Hilgardia 40: 161–92.Google Scholar
  92. Wilkes, A. 1942. The influence of selection on the preferendum of a chalcid (Mioropleotron fusoipennis Zett.) and its significance in the biological control of an insect pest. Proc. Roy. Soc. London (B) 130: 400–15.CrossRefGoogle Scholar
  93. Wilkes, A. 1947. The effects of selective breeding on the laboratory propagation of insect parasites. Proc. Roy. Soc. London (B) 134: 227–45.CrossRefGoogle Scholar
  94. Yazgan, S. 1972. A chemically defined synthetic diet and larval nutritional requirements of the endoparasitoid Itopteetis oonquisitor (Hymenoptera). J. Insect Physiol. 18: 2123–41.CrossRefGoogle Scholar
  95. Yokoyama, T. 1973. The history of sericultural science in relation to industry. In History of Entomology ed. R. F. Smith, T. E. Mittier, and C. N. Smith, pp. 267–84. Palo Alto: Annual Reviews. 517 pp.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • H. L. House
    • 1
  1. 1.Smithfield Experimental FarmAgriculture CanadaTrentonCanada

Personalised recommendations