Advertisement

Detoxication of Pesticides by Biota

  • M. A. Q. Khan
  • M. L. Gassman
  • S. H. Ashrafi
Part of the Environmental Science Research book series (ESRH, volume 6)

Abstract

A pesticidal chemical, once released into the environment, is subject to physiochemical and biochemical processes which determine its fate and efficacy. The latter transformations involve biota and encompass biodegradation, detoxication, or, simply, metabolism. The metabolism of pesticides by living organisms has been the subject of various symposia (Institute fur Okologische Chemie, 1970; National Academy of Science, 1972; Khan and Hauge, 1970; Hodgson, 1969; Gillette et al., 1969; Matsumura et al., 1972; O’Brien and Yamamoto, 1970; American Chemical Society, 1973; Khan and Bederka, 1974). This article will present an overview of the knowledge of detoxication of pesticides by biota: microorganisms, plants, and animals.

Keywords

Soil Microorganism Environmental Toxicology Ring Cleavage Mixed Function Oxidase Oxidative Desulfuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamson, R.H. 1974. Survival in Toxic Environments. M.A.Q. Khan and J.P. Bederka, Jr., editors. Academic Press, New York, 550 pp.Google Scholar
  2. Ahmed, M.K., and J.E. Casida. 1958. Metabolism of some organophos-phorus insecticides by microorganisms. J. Econ. Entomol. 51: 59.Google Scholar
  3. Alexander, M. 1972. Environmental Toxicology of Pesticides. F. Matsumura, G.M. Boush, and T. Misato, editors. Academic Press, New York, 637 pp.Google Scholar
  4. Allan, J. 1955. Loss of biological efficiency of cattle-dipping wash containing benzene hexachloride. Nature 175: 1131.PubMedCrossRefGoogle Scholar
  5. American Chemical Society. 1973. Significance of Pesticide Metabolites. A Symposium. 166th National Meeting, Chicago, Illinois.Google Scholar
  6. Andrews, N.R., H.W. Dorough, and D.A. Lindquist. 1967. Degradation and elimination of Temik in rats. J. Econ. Entomol. 60: 979.Google Scholar
  7. Beneset, H., and F. Matsumura. Unpublished data.Google Scholar
  8. Blinn, R.C. 1968. Abate insecticide: the fate of 0,0,0’,0’-tetramethyl 0,0’-thiodi-p-phenylene phosphorothioate on bean leaves. J. Agr. Food Chem. 16: 441.CrossRefGoogle Scholar
  9. Bollag, J.M., and S.Y. Liu. 1971. Degradation of Sevin by soil microorganisms. Soil Biol. Biochem. 3: 337.CrossRefGoogle Scholar
  10. Boush, G.M., and J.C. Batterton. 1972. Environmental Toxicology of Pesticides. F. Matsumura, G.M. Boush, and T. Misato, editors. Academic Press, New York, 637 pp.Google Scholar
  11. Boush, G.M., and F. Matsumura. 1967. Insecticidal degradation by pseudomonas melophthora, the bacterial symbiote of the apple maggot. J. Econ. Entomol. 60: 918.Google Scholar
  12. Bowman, M.C., M. Beroza, and J.A. Harding. 1969. Determination of phorate and five of its metabolites in corn. J. Agr. Food Chem. 17: 138.CrossRefGoogle Scholar
  13. Brooks, G.T. 1968. Symposium on the Science and Technology of Residual Insecticides in Food Production With Special Reference to Aldrin and Dieldrin. Shell Oil Company, USA, 244 pp.Google Scholar
  14. Brooks, G.T. 1969. The metabolism of diene-organochlorine (cyclodiene) insecticides. Residue Reviews 27: 81.Google Scholar
  15. Brooks, G.T., A. Harrison, and S.E. Lewis. 1970. Cyclodiene epoxide ring hydration by microsomes from mammalian liver and houseflies. Biochem. Pharmacol. 19: 255.CrossRefGoogle Scholar
  16. Brown, A.W.A. 1971. Pesticides in the Environment. L. White-Stevens, editor. Marcel Dekker, p. 457.Google Scholar
  17. Buhler, D.R., and M.E. Rasmusson. 1968. Reduction of p-nitrobenzoic acid by fishes. Arch. Biochem. Biophys. 124: 582.PubMedCrossRefGoogle Scholar
  18. Bull, D.L., and P.L. Adkinson. 1963. Absorption and metabolism of C14-labeled DDT by DDT-susceptible and DDT-resistant pink bollworm adults. J. Econ. Entomol. 56: 641.Google Scholar
  19. Bull, D.L., and D.A. Lindquist. 1964. Metabolism of 3-hydroxyN,N-dimethyl-crotonamide dimethyl phosphate by cotton plants, insects, and rats. J. Agr. Food Chem. 12: 310.CrossRefGoogle Scholar
  20. Bull, D.L. 1965. Metabolism of di-syston by insects, isolated cotton leaves, and rats. J. Econ. Entomol. 58: 249.PubMedGoogle Scholar
  21. Burger, K., I.C. MacRae, and M. Alexander. 1962. Decomposition of phenoxyalkyl carboxylic acids. Soil. Sci. Soc. Amer. Proc. 26: 243.CrossRefGoogle Scholar
  22. Casida, J.E. 1969. Microsomes and Drug Oxidations. J.R. Gillette, A.H. Conney, G.J. Cosmides, R.W. Estabrook, J.R. Fonts, and G.J. Mannering, editors. Academic Press, 547 pp.Google Scholar
  23. Casida, J.E., and L. Lykken. 1969. Metabolism of organic pesticide chemicals in higher plants. Ann. Rev. Plant Physiol. 20: 607.Google Scholar
  24. Chakraborty, J., and J.N. Smith. 1967. Enzymic oxidations of some alkylbenzenes in insects and vertebrates. Biochem. J. 102: 498.Google Scholar
  25. Chapman, P.J. 1972. Degradation of Synthetic Organic Molecules in the Biosphere. Nation. Acad. Sci., 347 pp.Google Scholar
  26. Clark, A.G., M. Hitchcock, and J.N. Smith. 1966. Metabolism of gammexane in flies, ticks, and locusts. Nature 209: 103.PubMedCrossRefGoogle Scholar
  27. Clayson, D.B., and M.J. Ashton. 1963. The metabolism of 1-naphthylamine and its bearing on the mode of carcinogenesis of the aromatic amines. Acta Unio Intern. Contra. Cancrum 19: 539.Google Scholar
  28. Coppedge, J.R., D.A. Lindquist, D.L. Bull, and H.W. Dorough. 1967. Fate of 2-methyl-2-(methylthio) propionaldehyde 0-(methylcarbamoyl) oxime (Temik) in cotton plants and soil. J. Agr. Food Chem. 15: 902.CrossRefGoogle Scholar
  29. Crosby, D.G. 1964. Metabolites of 2,4-dichlorophenoxyacetic acid (2,4-D) in bean plants. J. Agr. Food Chem. 12: 3.Google Scholar
  30. Dailey, R.E., A.K. Klein, E. Brouwer, J.D. Link, and R.C. Braunberg. 1972. Effect of testosterone on metabolism of 14C-photodieldrin in normal, castrated, and oophorectomized rats. J. Agr. Food Chem. 20: 371.CrossRefGoogle Scholar
  31. Dorough, H.W. and J.E. Casida. 1964. Nature of certain carbamate metabolites of the insecticide Sevin. J. Agr. Food Chem. 12: 294.CrossRefGoogle Scholar
  32. Duxbury, J.M., J.M. Tiedje, M. Alexander, and J.E. Dawson. 1970. 2,4-D metabolism: Enzymatic conversion of chloromaleylactic acid to succinic acid. J. Agr. Food Chem. 18: 199.CrossRefGoogle Scholar
  33. Edwards, C.A. 1970. Persistence Pesticides in the Environment. The Chem. Rubber Co. Press, 78 pp.Google Scholar
  34. Eldefrawi, M.E., and W.M. Hoskins. 1961. Relation of the rate of penetration and metabolism to the toxicity of Sevin to three insect species. J. Econ. Entomol. 54: 401.Google Scholar
  35. Fang, S.C., and J.S. Butts. 1954. Studies in plant metabolism. III. Absorption, translocation, and metabolism of radioactive 2,4-D in corn and wheat plants. Plant Physiol. 29: 56.PubMedCrossRefGoogle Scholar
  36. Faulkner, J.K., and D. Woodcock. 1961. Agri. Biol. Chem. J. 70: 373.Google Scholar
  37. Faulkner, J.K., and D. Woodcock, 1965. Fungal detoxication. Part VII. Metabolism of 2,4-dichlorophenoxyacetic and 4-chloro-2methylphenoxy-acetic acids by Aspergillus niger. J. Chem. Soc. 1187.Google Scholar
  38. Fawcett, C.H., J.M.A. Ingram, and R.L. Wain. 1954. The (3-oxidation of w-phenoxyalkylcarboxylic acids in the flax plant in relation to their plant growth-regulating activity. Proc. Royal Soc. London B142: 60.CrossRefGoogle Scholar
  39. Feung, C.S., R.H. Hamilton, and F.H. Witham. 1971. Metabolism of 2,4-dichlorophenoxyacetic acid by soybean cotyledon callus tissue cultures. J. Agr. Food Chem. 19: 475.CrossRefGoogle Scholar
  40. Finley, R.B., and R.E. Pillmore. 1963. Conversion of DDT to DDD in animal tissue. Am. Inst. Biol. Sci. Bull. 13: 41.Google Scholar
  41. Garretto, M., and M.A.Q. Khan. 1974. Mixed-function oxidase in fresh water fish: Bluegill and Kissing Guorami. PaperGoogle Scholar
  42. presented at the 7th annual meeting of Illinois State Acad. Sci. submitted to Comp. Biochem. Physiol.Google Scholar
  43. Gillette, J.R., A.H. Conney, G.J. Cosmides, R.W. Estabrook, J.R. Fout, and G.J. Mannering. 1969. Microsomes and Drug Oxidations. Academic Press, New York, 547 pp.Google Scholar
  44. Golab, T., R.J. Herberg, S.J. Parka, and J.B. Tepe. 1967. Metabolism of carbon-14 trifluralin in carrots. J. Agr. Food Chem. 15: 638.CrossRefGoogle Scholar
  45. Grover, P.L., and P. Sims. 1965. The metabolism of 1–2,3,4,5,6pentachlorocyclohex-1-ene and y-hexachlorocyclohexane in rats. Biochem. J. 96: 521.PubMedGoogle Scholar
  46. Guenzi, W.D., and W.E. Beard. 1968. Anaerobic conversion of DDT to DDE and aerobic stability of DDT in soil. Soil Sci. Soc. Amer. Proc. 32: 522.CrossRefGoogle Scholar
  47. Gutenmann, W.H., M.A. Loos, M. Alexander, and D.J. Lisk. 1964. Beta oxidation of phenoxyalkanoic acids in soil. Soil Sci. Soc. Amer. Proc. 28: 205.CrossRefGoogle Scholar
  48. Hamilton, R.H. 1964. Tolerance of several grass species to 2-chloro-s-triazine herbicides in relation to degradation and content of benzoxazinone derivatives. J. Agr. Food Chem. 12: 14.CrossRefGoogle Scholar
  49. Harris, C.R. 1966. Influence of soil type on the activity of insecticides in soil. J. Econ. Entomol. 59: 1221.Google Scholar
  50. Harris, C.I., D.D. Kaufman, T.J. Sheets, R.G. Nash, and P.C.Google Scholar
  51. Kearney. 1968. Behavior and fate of s-triazines in soils. In Advances in Pest Control. R.L. Metcalf, editor, 8: 1.Google Scholar
  52. Harrison, R.B., D.C. Holmes, J. Roburn, and Z.O’G. Tatton. 1967. The fate of some organochlorine pesticides on leaves. J. Sci. Fd. Agric. 18: 10.CrossRefGoogle Scholar
  53. Hay, J.R., and K.V. Thimann. 1956. The fate of 2,4-dichlorophenoxyacetic acid in bean seedlings. I. Recovery of 2,4 -dichloro-phenoxyacetic acid and its breakdown in the plant. Plant Physiol. 31: 382.PubMedCrossRefGoogle Scholar
  54. Hegenman, G.W. 1972. Degradation of Synthetic Organic Molecules in the Biosphere. Nation. Acad. Sci. 347 pp.Google Scholar
  55. Henneberg, M. 1964. Dinitroisopiopylphenol (DNPP) and dinitrobutylphenol (DNBP) metabolites in rats. Acta Poloniae Pharmacentics 21: 222.Google Scholar
  56. Hodgson, E. 1969. Enzymatic Oxidation of Toxicants. North Carolina State University at Raleigh, 228 pp.Google Scholar
  57. Institute fur Okologische Chemie. 1970. Metabolism von Pestiziden und Ihr Vehallen unter Umweltbedingungen. Internationale Symposium, Bonn, Germany.Google Scholar
  58. Jooste, J., and D.E. Moreland. 1963. Preliminary characterization of some plant carboxylic ester hydrolases. Phytochemistry 2: 263.CrossRefGoogle Scholar
  59. Kearney, P.C., and D.D. Kaufman. 1965. Enzyme from soil bacterium hydrolyzes phenylcarbamate herbicides. Science 147: 740.PubMedCrossRefGoogle Scholar
  60. Kearney, P.C., D.D. Kaufman, and M. Alexander. 1967. Soil Biochemistry. A. McLaren and G.H. Peterson, editors. Marcel Dekker.Google Scholar
  61. Khan, M.A.Q., and J.P. Bederka, Jr. 1974. Survival in Toxic Environments. Academic Press, 550 pp.Google Scholar
  62. Khan, M.A.Q., J.L. Chang, D.J. Sutherland, J.D. Rosen, and A. Kamal. 1970a. House fly microsomal oxidation of some foreign compounds. J. Econ. Entomol. 63: 1807.PubMedGoogle Scholar
  63. Khan, M.A.Q., W.F. Coello, A.A. Khan, and H. Pinto. 1972a. Some characteristics of the microsomal mixed-function oxidase in the freshwater crayfish, Cambarus. Life Sci. 11: 405.CrossRefGoogle Scholar
  64. Khan, M.A.Q., and W.O. Hauge. 1970. Toxicology, Biodegradation, and Efficacy of Pesticides. Swets and Zeitlinger, 434 pp.Google Scholar
  65. Khan, M.A.Q., A. Kamal, R.J. Wolin, and J. Runnels. 1972b. In vivo and in vitro epoxidation of aldrin by aquatic food chain organisms. Bull. Environ. Contam. Toxicol. 8: 219.PubMedCrossRefGoogle Scholar
  66. Khan, M.A.Q., J.D. Rosen, and D.J. Sutherland. 1969. Insect metabolism of photoaldrin and photodieldrin. Science 164: 318.PubMedCrossRefGoogle Scholar
  67. Khan, M.A.Q., R.H. Stanton, and G. Reddy. 1974. Survival in Toxic Environments. M.A.Q. Khan and J.P. Bederka, Jr., editors. Academic Press, 550 pp.Google Scholar
  68. Khan, M.A.Q., R.H. Stanton, D.J. Sutherland, J.D. Rosen, and N. Maitra. 1973. Toxicity metabolism relationship of the photoisomers of cyclodiene insecticides. Arch. Environ. Contam. Toxicol. 1: 159.PubMedCrossRefGoogle Scholar
  69. Khan, M.A.Q., D.J. Sutherland, J.D. Rosen, and W. Carey. 1970b. Effect of sesamex on the toxicity and metabolism of cyclodienes and their photoisomers in the house fly. J. Econ. Entomol. 63: 470.PubMedGoogle Scholar
  70. Khan, M.A.Q., and L.C. Terriere. 1968. DDT-dehydrochlorinase activity in house fly strains resistant to various groups of insecticides. J. Econ. Entomol. 61: 732.Google Scholar
  71. Klein, A.K., R.E. Dailey, M.S. Walton, V. Beck, J.D. Link. 1970. Metabolites isolated from urine of rats fed 14C-photodieldrin. J. Agr. Food Chem. 18: 705.Google Scholar
  72. Klein, A.K., J.D. Link, N.F. Ives. 1968. Isolation and purification of metabolites found in the urine of male rats fed aldrin and dieldrin. J. Assoc. Off. Anal. Chem. 51: 895.Google Scholar
  73. Klein, W., J. Kohli, I. Weisgerber, and F. Korte. 1973. Fate of aldrin-14C in potatoes and soil under outdoor conditions. J. Agr. Food Chem. 21: 152.CrossRefGoogle Scholar
  74. Knaak, J.B., M.J. Tallant, W.J. Bartley, and L.J. Sullivan. 1965. The metabolism of carbaryl in the rat, guinea pig, and man. J. Agr. Food Chem. 13: 537.CrossRefGoogle Scholar
  75. Knowles, C.O. 1974. Survival in Toxic Environments. M.A.Q. Khan and J.P. Bederka, Jr., editors. Academic Press, 550 pp.Google Scholar
  76. Korte, F. 1967. Metabolism of 14C-labeled insecticides in microorganisms, insects, and mammals. Botgu-Kagaku 32: 46.Google Scholar
  77. Korte, F. 1968. Symposium on the Science and Technology of Residual Insecticides in Food Production With Special Reference to Aldrin and Dieldrin. Shell Oil Company, USA, 244 pp.Google Scholar
  78. Korte, F. 1970. IUPAC Commission on Terminal Residues. J. Ass. Off. Analy. Chem. 53: 987.Google Scholar
  79. Kuhr, R.J. 1970. Metabolism of carbamate insecticide chemicals in plants and insects. J. Agr. Food Chem. 18: 1023.CrossRefGoogle Scholar
  80. Kuhr, R.J., and J.E. Casida. 1967. Persistent glycosides of metabolites of methylcarbamate insecticide chemicals formed by hydroxylation in bean plants. J. Agr. Food Chem. 15: 814.CrossRefGoogle Scholar
  81. Kuwatsuka, S. 1971. Environmental Toxicology of Pesticides. F. Matsumura, G.M. Boush, and T. Misato, editors. Academic Press, 637 pp.Google Scholar
  82. Laanio, T.L., G. Dupuis, and H.O. Esser. 1972. Fate of 14C-labeled diazinon in rice, paddy soil, and pea plants. J. Agr. Food Chem. 20: 1213.CrossRefGoogle Scholar
  83. Lamoureux, G.L., L.E. Stafford, and F.S. Tanaka. 1971. Metabolism of 2-chloro-N-isopropylacetanilide (propachlor) in the leaves of corn, sorghum, sugarcane, and barley. J. Agr. Food Chem. 19: 346.CrossRefGoogle Scholar
  84. Leeling, N.C., and J.E. Casida. 1966. Metabolites of carbaryl (1-naphthyl methylcarbamate) in mammals in enzymatic systems for their formation. J. Agr. Food Chem. 14: 281.CrossRefGoogle Scholar
  85. Lemin, A.J. 1966. Absorption, translocation, and metabolism of diphenamid-1-C14 by tomato seedlings. J. Agr. Food Chem. 14: 109.Google Scholar
  86. Liu, S.Y., and J.M. Bollag. 1971. Metabolism of carbaryl by a soil fungus. J. Agr. Food Chem. 19: 487.CrossRefGoogle Scholar
  87. Loos, M.A., R.N. Roberts, and M. Alexander. 1967. Phenols as intermediates in the decomposition of phenoxyacetates by an arthrobacter species. Can. J. Microbiol. 13: 679.PubMedCrossRefGoogle Scholar
  88. Ludwig, G., and F. Korte. 1965. Metabolism of insecticides. X. Detection of dieldrin metabolite by GLC analysis. Life Sci. 4: 2027.PubMedCrossRefGoogle Scholar
  89. Matsumura, F. 1974. Survival in Toxic Environments. M.A.Q. Khan and J.O. Bederka, Jr., editors. Academic Press, 550 pp.Google Scholar
  90. Matsumura, F., and G.M. Boush. 1966. Malathion degradation by trichoderma viride and a pseudomonas species. Science 153: 1278.PubMedCrossRefGoogle Scholar
  91. Matsumura, F., G.M. Boush, and T. Misato. 1972. Environmental Toxicology of Pesticides. Academic Press, 637 pp.Google Scholar
  92. Matsumura, F., K.S. Patil, and G.M. Boush. 1970. Formation of “photodieldrin” by microorganisms. Science 170: 1206.PubMedCrossRefGoogle Scholar
  93. Matsunaka, S. 1972. Environmental Toxicology of Pesticides. F. Matsumura, G.M. Boush, and T. Misato, editors. Academic Press, 637 pp.Google Scholar
  94. Matsunaka, S., and H. Nakamura. 1972. Mode of action and selectivity mechanism of a herbicide, 5-chloro-4-methyl-2-propionamide-1,3thiazole. Weed Res. ( Tokyo ) 13: 29.Google Scholar
  95. Matthews, H.B., and F. Matsumura. 1969. Metabolic fate of dieldrin in the rat. J. Agr. Food Chem. 17: 845.CrossRefGoogle Scholar
  96. Matthews, H.B., J.D. McKinney, and G.W. Lucier. 1971. Dieldrin metabolism, excretion, and storage in male and female rats. J. Agr. Food Chem. 19: 1244.CrossRefGoogle Scholar
  97. Menzer, R.E., and J.E. Casida. 1965. Nature of toxic metabolites formed in mammals, insects, and plants from 3-(dimethoxphosphinyloxy)-N,N-dimethyl-cis-crotonamide and its N-methyl analog. J. Agr. Food Chem. 13: 102.CrossRefGoogle Scholar
  98. Menzie, C.M. 1966. Metabolism of pesticides. U.S. Department of Interior, Fish and Wildlife Service, Special Scientific Rep. No. 96 (Wildlife). 274 pp.Google Scholar
  99. Miskus, R.P., D.P. Blair, and J.E. Casida. 1965. Conversion of DDT to DDD by bovine rumen fluid, lake water, and reduced porphyrins. J. Agr. Food Chem. 13: 481.CrossRefGoogle Scholar
  100. Miyamoto, J. 1972. Environmental Toxicology of Pesticides. F. Matsumura, G.M. Boush, and T. Misato, editors. Academic Press, 637 pp.Google Scholar
  101. Miyamoto, J., A. Kitagawa, and Y. Sato. 1966. Metabolism of organo-phosphorus insecticides by Bacillus subtilis with special emphasis on Sumithion. Jap. J. Expt. Med. 36: 211.Google Scholar
  102. Miyazaki, S., G.M. Boush, and F. Matsumura. 1970. Microbial degradation of chlorobenzilate (ethyl 4,4’-dichlorobenzilate) and chloropropylate (isopropyl 4,4’-dichlorobenzilate). J. Agr. Food Chem. 18: 87.CrossRefGoogle Scholar
  103. Nashed, R.B., S.E. Katz, and R.D. Illnicki. 1970. The metabolism of 14C-chlorbromuron in corn and cucumber. Weed Sci. 18: 122.Google Scholar
  104. National Academy of Sciences. 1972. Degradation of synthetic organic molecules in the biosphere, Proceedings of a conference in San Francisco, June, 1971, 350 pp.Google Scholar
  105. Neudorf, S., and M.A.Q. Khan. 1974. Paper presented at the 7th annual meeting of the Illinois State Academy of Sciences, submitted to Bull. Environ. Contam. Toxicol.Google Scholar
  106. O’Brien, R.D. 1962. Metabolic Factors Controlling Duration of Drug Action. B.B. Brodie and E.G. Erdos, editors. McMillan (Pergammon) Press, p. 111.Google Scholar
  107. O’Brien, R.D. 1967. Insecticides: Action and Metabolism. Academic Press, 378 pp.Google Scholar
  108. O’Brien, R.D. and I. Yamamoto. 1970. Biochemical Toxicology of Insecticides. Academic Press, 218 pp.Google Scholar
  109. Perry, A.S. 1964. The physiology of insecticide resistance by insects. Physiology of Insects. M. Rockstein, editor. Academic Press, Vol. 3: 286.Google Scholar
  110. Pinto, J.D., M.N. Camien, and M.S. Dunn. 1965. Metabolic fate of p,p’-DDT[1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane] in rats. J. Biol. Chem. 240: 2148.PubMedGoogle Scholar
  111. Rogers, R.L. 1971. Absorption, translocation, and metabolism of p-nitrophenyl-a,a,a-trifluoro-2-nitro-p-tolyl ether by soybeans. J. Agr. Food Chem. 19: 32.Google Scholar
  112. Rosen, J.D., and D.J. Sutherland. 1967. The nature and toxicity of the photoconversion products of aldrin. Bull. Environ. Contam. Toxicol. 2: 1.CrossRefGoogle Scholar
  113. Runnels, J.M., and M.A.Q. Khan. 1973. Hepatic mixed-function oxidase activity towards cyclodiene insecticides in the domestic pigeon. Amer. Zool. 13: 1308.Google Scholar
  114. Shimabukuro, R.H., H.R. Swanson, and W.C. Walsh. 1970. Atrazine detoxication mechanism in corn. Plant Physiol. 46: 103.PubMedCrossRefGoogle Scholar
  115. Sijperstein, A.K., and J. Kaslander. 1964. Metabolism of fungi- cides by plants and microorganisms. Outlook Agr. 4: 119.Google Scholar
  116. Smith, J.N. 1968. The comparative metabolism of xenobiotics. In Advances in Comparative Biochemistry and Physiology. 0. Lowenstein, editor. 3: 173.Google Scholar
  117. Stanton, R.H., and M.A.Q. Khan. 1973. Mixed-function oxidase activity toward cyclodiene insecticides in bass and bluegill sunfish. Pest. Biochem. Physiol. 3: 351.CrossRefGoogle Scholar
  118. Stenersen, J.H.V. 1965. DDT-metabolism in resistant and susceptible stableflies and in bacteria. Nature 207: 660.PubMedCrossRefGoogle Scholar
  119. Still, G.G. 1968. Metabolism of 3,4-dichloropropionanilide in plants: The metabolic fate of the 3,4-dichloroaniline moiety. Science 159: 992.PubMedCrossRefGoogle Scholar
  120. Stromme, J.H. 1965. Metabolism of disulfiram and diethyldithiocarbamate in rats with demonstration of an in vivo ethanol-induced inhibition of the glucuronic acid conjugation of the thiol. Biochem. Pharmacol. 14: 393.CrossRefGoogle Scholar
  121. Tatsukawa, R., T. Wakimoto, and T. Ogawa. 1970. J. Food Hyg. Soc. ( Japan ) 11: 1.CrossRefGoogle Scholar
  122. Taylor, H.F., and R.L. Wain. 1962. Side-chain degradation of certain w-phenoxyalkane carboxylic acids by Noeardia cooliaca and other microorganisms isolated from soil- Proceed. Royal Soc. London (Series B) 156: 172.Google Scholar
  123. Thomas, E.W., B.C. Loughman, and P.G. Powell. 1964a. Metabolic fate of some chlorinated phenoxyacetic acids in the stem tissue of Avena sativa. Nature 204: 286.CrossRefGoogle Scholar
  124. Thomas, E.W., B.C. Loughman, and P.G. Powell. 1964b. Metabolic fate of 2,4-dichlorophenoxyacetic acid in the stem tissue of Phasoolus vulgaris. Nature 204: 884.CrossRefGoogle Scholar
  125. Tipton, C.C., R.R. Husted, and F.H.C. Tsao. 1971. Catalysis of simazine hydrolysis by 2,4-dihydroxy-7-methoxy-1,4-benzoxazin3-one. J. Agr. Food Chem. 19: 484.CrossRefGoogle Scholar
  126. Tonomura, K., K. Furukawa, and M. Yamada. 1972. Environmental Toxicology of Pesticides. F. Matsumura, G.M. Boush, and T. Misato, editors. Academic Press, 637 pp.Google Scholar
  127. Tsukano, U., and A. Kobayashi. 1972. Formation of y-BTC in flooded rice field soils treated with y-BHC. Agr. Biol. Chem. 36: 166.CrossRefGoogle Scholar
  128. Uesugi, Y., C. Tomizawa, and T. Murai. 1972. Environmental Toxicology of Pesticides. F. Matsumura, G.M. Boush, and T. Misato, editors. Academic Press, 637 pp.Google Scholar
  129. Wain, R.L. 1955. A new approach to selective weed control. Ann. Appl. Biol. 42: 151.Google Scholar
  130. Williams, I.H., M.J. Brown, and D.G. Finlayson. 1972. Determination of residues of fensulfothion and its sulfone in muck soil. J. Agr. Food Chem. 20: 1219.CrossRefGoogle Scholar
  131. Williams, R.T. 1959. Detoxication Mechanisms. Chapman 4 Hall, London, Second Edition, 796 pp.Google Scholar
  132. Williams, R.T. 1964a. Excerpta Med. Intern. Congr. Ser. 81: 9.Google Scholar
  133. Williams, R.T. 1964b. Metabolism of phenolics in animals. In Biochemistry of Phenolic Compounds. J.B. Harborne, editor. Academic Press, p. 205.Google Scholar
  134. Yih, R.Y., D.H. McRae, and H.F. Wilson. 1968. Mechanism of selective action of 3’,4’-dichloropropionanilide. Plant Physiol. 43: 1291.PubMedCrossRefGoogle Scholar
  135. Yu, S.J., U. Kiigemagi, and L.C. Terriere. 1971. Oxidative metabolism of aldrin and isodrin by bean root fractions. J. Agr. Food Chem. 19: 5.CrossRefGoogle Scholar
  136. Zayed, S.M.A.D., I.Y. Mostafa, and A. Hassan. 1965. Metabolism of organophosphorus insecticides. VII. Transformation of 32P-labeled dipterex through microorgansism. Archiv. Eur. Mikrobiologie 51: 118.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • M. A. Q. Khan
    • 1
  • M. L. Gassman
    • 1
  • S. H. Ashrafi
    • 1
  1. 1.Department of Biological SciencesUniversity of Illinois at Chicago CircleChicagoUSA

Personalised recommendations